首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于实时观测数据的大气密度模式修正   总被引:1,自引:0,他引:1  
针对国际大气密度模式NRLMSISE-00, 以中国神舟飞船探测数据为基础, 提出一种基于实时大气密度观测数据的模式修正方法. 通过计算分析模式计算结果与探测数据的误差分布特征, 针对地磁相对平静期(Ap≤ 30)模式计算的误差特点, 建立了一种平均误差修正方法, 即认为在相对平静期, 在相同纬度和地方时, 模式误差基本相同, 某一时刻模式预测误差可以近似用与其相同纬度和地方时的平均误差来替代, 从而对模式预测结果进行修正. 以神舟4号探测数据为基础, 通过对模式预测结果采用两种方式进行修正, 可以看到模式误差得到了一定的改善. 采用误差库累积准实时修正, 修正后的误差由原来的20 %降至6 %; 采用误差库5天滑动预报修正后, 模式提前1, 2, 3天的预测误差由原来的20 %分别降至7.8 %, 9.4 %和10.5%.   相似文献   

2.
典型热层密度模式误差分析   总被引:1,自引:1,他引:0       下载免费PDF全文
以CHAMP卫星2001年5月15日至2008年12月31日期间2755天的加速度计反演热层大气密度数据为基准,对JB2008和MSISE00两种模式的反演误差进行了统计分析.发现这两种模式整体上均高估了热层大气密度,但JB2008模式的精度优于MSISE00模式.JB2008和MSISE00模式的平均相对误差分别为2.2%和17.6%.对空间环境简要分类,统计各类型事件下热层实测和模式密度的纬度和地方时特性,发现MSISE00模式具有较好的地方时特性,而JB2008模式具有较好的纬度特性.研究结果对掌握目前热层密度模式误差特性及指导模式改进方向具有一定意义.   相似文献   

3.
一种基于温度参数的热层密度修正方法   总被引:2,自引:1,他引:1       下载免费PDF全文
热层大气的阻力效应是影响低轨航天器大量空间操作的重要因素, 尤其是经验密度模式, 其固有的至少15%的内符合误差已严重制约航天器轨道计算精度的提高. 针对广泛应用的经验密度模式, 选择物理背景简明、关联参数较少的JACCHIA71模式, 以地磁平静条件下的全球散逸层顶温度最小值Tc及125 km高度拐点温度Tx为对象, 建立密度相对于上述温度参数的条件方程, 推导密度相对于温度参数的解析偏导数, 并给出其最小二乘解. 同时, 利用CHAMP卫星数据对模式进行修正, 模式平均误差从40%降低至3%左右. 通过TG01飞行器的轨道预报比较, 修正前后轨道预报位置精度从2 km提升至1 km左右. 经过CHAMP卫星和TG01飞行器的实测数据检验, 验证了修正算法的正确性和有效性.   相似文献   

4.
大气模型修正是提高模型精度的一种重要方法.利用CHAMP卫星高精度加速仪反演的密度数据,采用球谐函数的形式对NRLMSISE-00模型进行修正.为了消除轨道高度变化对密度修正结果的影响,将密度数据同化到同一高度处,计算修正之后的密度误差,进而对未来三天的密度进行预报.结果表明,经球谐修正后,修正误差和预报误差均有显著降低.在太阳活动高年,修正误差可降至10%左右,提前1~3天预报精度分别提高31.34%,21.39%和13.75%;太阳低年时修正误差可降至14%左右,提前1~3天预报精度分别提高55.03%,47.79%和43.60%.   相似文献   

5.
低轨航天器弹道系数估算及热层大气模型误差分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用低轨(LEO)航天器在轨期间两行轨道根数(TLEs)数据,结合经验大气密度模型NRLMSISE00,反演计算得到其在轨期间的弹道系数B’,以31年B’的平均值代替弹道系数真值,分别通过标准球形目标卫星对比以及物理参数基本相同的非球形目标卫星对比,对弹道系数真值进行了检验;利用不同外形目标卫星弹道系数在不同太阳活动周内的变化规律,结合太阳和地磁活动变化,估计经验大气密度模型的误差分布. 结果表明,利用反演弹道系数31年的平均值来代替真值,其在理论值的正常误差范围内;大气密度模型误差在210~526km高度范围内存在相同的变化趋势,且模型误差随高度增加而增大;在短周期内B’变化与太阳活动指数F10.7存在反相关性;密度模型不能有效模拟2008年出现的大气密度异常低. 以上结果表明,经验大气密度模型结果需要修正,尤其是在太阳活动峰年和谷年,此外,磁暴期间模型误差的修正对卫星定轨和轨道预报等也具有重要意义.   相似文献   

6.
利用卫星两行轨道根数反演热层密度   总被引:2,自引:0,他引:2  
两行轨道根数(TLEs)是基于一般摄动理论产生的用于预报地球轨道飞行器位置和速度的一组轨道参数,通过求解大气阻力微分方程,可反演出热层大气密度. 本文选取近圆轨道CHAMP卫星和椭圆轨道Explorer8卫星,以两行轨道根数数据为基础,计算反弹道系数,并根据不同轨道特征采用两种不同反演方法对热层大气密度进行研究. 结果表明,这两种方法反演得到的大气密度与实测值均符合较好,其中CHAMP卫星的反演结果和经验模式值相对于实测值的误差分别为7.94%和13.94%,Explorer8卫星的误差分别为9.04%和14.32%. 相比模式值,利用两行轨道根数数据反演的热层大气密度更接近于实测值,说明该方法可以作为获取大量可靠大气密度数据的一种有效途径.   相似文献   

7.
采用热层电离层耦合模式TIEGCM和集合卡尔曼滤波同化方法,利用同化COSMIC电离层掩星电子密度数据优化热层电离层参量,并将模式预报的大气密度与CHAMP卫星大气密度数据进行对比,分别开展模拟和实测数据的同化预报实验.在模拟数据同化实验中,状态向量包含温度、风场和离子成分的实验结果表明,仅优化温度即可达到最优的热层大气密度预报效果.在实测数据同化实验中,将温度作为状态向量参数,优化结果表明,循环同化过程中模式预报的大气密度相对偏差的均方根误差在48h内从38%减小到27%,同化稳定时间至少需要30h.预报过程中大气密度预报效果的改善持续时间为34h.这表明电子密度同化能够改善热层大气密度的预报精度,设计的实验方案合理可行,可获得较长的预报时效.   相似文献   

8.
选用了神舟2号(SZ-2)大气密度探测器在2001年2—4月间的探测数据,进行日照和阴影区域热层大气密度变化的探讨.结果表明:在高度410km附近,日照和阴影区域大气密度变幅为2—3倍,变幅的大小与地磁活动程度呈负相关关系.日照面大气密度峰区位于星下点地方时1400—1500LT的纬度处,峰值大小与太阳活动程度呈正相关关系.阴影面大气密度谷区位于星下点地方时0400-0500的纬度处,同时在±10°纬度区域中还出现了阴影面峰区.  相似文献   

9.
基于经验加速度的低轨卫星轨道预报新方法   总被引:1,自引:0,他引:1  
研究将定轨过程中的经验加速度应用于地球低轨卫星轨道预报的新方法. 利用GPS伪距观测数据和简化动力学最小二乘批处理方法对地球低轨卫星定 轨, 其中卫星位置、速度及大气阻力系数和辐射光压系数可以直接用于轨道预报. 作为简化动力学最重要特征的经验加速度呈现准周期、余弦曲线特点, 可通过 傅里叶级数拟合建模. 确定性动力学模型与补偿大气阻力模型误差的切向经验 加速度级数拟合模型组成增强型动力学模型用于提高轨道预报精度. 应用 GRACE-A星载GPS伪距观测数据和IGS超快星历定轨并进行轨道预报, 结果表明 轨道预报初值位置精度达到0.2m, 速度精度达到1×10-4m·s-1, 预报3天位置精度优于60m, 比只利用确定性动力学模型进行预报精度平 均提高2.3倍. 先定轨后预报的模式可用在星上自主精确导航系统中.   相似文献   

10.
超低轨道(VLEO)由于其轨道较低,在该轨道运行的航天器在对地观测、科学研究方面具有独特优势,但对该轨道的大气密度变化特性认知不足。在阐述国内外超低轨道大气密度原位探测发展历史及现状的基础上,总结了现有超低轨道大气密度原位探测技术,对中国超低轨道大气密度原位结果进行了初步分析和讨论。结果表明:在2020年10月空间环境平静期,250 km和350 km高度大气密度相差一个量级;升降轨期间,超低轨道大气密度每千米分别下降0.025×10-12 kg/m3和0.041×10-12 kg/m3,均小于模式值的0.5倍;北纬40°时,处于午夜的升轨段(约250 km)大气密度是处于正午的降轨段(约420 km)大气密度的11.2倍,高度的影响大于地方时的影响;不同纬度下,实测日均值和模式日均值的比值从高纬的0.49降为低纬的0.39,模式值偏大。在超低轨道上,实测值总体上比模式值小,可为大气物理研究和应用研究提供基础数据。   相似文献   

11.
利用GRACE(Gravity Recovery And Climate Experiment)和CHAMP(Challenging Mini-Satellite Payload)卫星2002-2008年的大气密度数据与NRLMSISE-00大气模型密度结果进行比较,分析了模型密度误差及其特点.结果显示,NRLMSISE-00大气模型计算的密度值普遍偏大,其相对误差随经纬度变化,在高纬度相对较小;相对误差随地方时变化,在02:00LT和15:00LT左右较大,10:00LT和20:00LT左右较小.通过模型密度相对误差与太阳F10.7指数的对比分析发现,在太阳活动低年模型相对误差最大,而在太阳活动高年相对误差较小;将模型结果分别与GRACEA/B双星和CHAMP卫星的密度数据进行比较,发现对于轨道高度更高的GRACE卫星轨道,模型相对误差更大;在地磁平静期,相对误差与地磁ap指数(当前3h)相关性不强,但是在大磁暴发生时,误差急剧增大.   相似文献   

12.
基于NTCM-BC模型的全球卫星导航系统单频电离层延迟修正   总被引:1,自引:0,他引:1  
选择NTCM-BC模型作为单频电离层延迟修正模型,通过非线性最小二乘拟合的方法,利用提前一天预测的电离层图(COPG文件),计算得到NTCM-BC模型修正系数;利用Klobuchar模型和IGS发布的GIM数据对NTCM-BC模型进行比较和分析.对太阳活动高、中、低年实测数据的分析结果表明:全球平均水平上,NTCM-BC模型的电离层延迟修正性能明显优于Klobuchar模型,NTCM-BC模型的TEC平均误差和均方根误差比Klobuchar模型分别下降了41%和30%;模型的TEC计算误差与太阳活动剧烈程度成正相关,即太阳活动高年模型误差较大,太阳活动低年误差相对较低.相较于磁静日,磁扰日期间Klobuchar模型和NCTM模型的误差均有一定程度的增加.此外,模型的电离层修正误差同时存在明显的纬度、季节和地方时差异.   相似文献   

13.
利用CHAMP卫星数据,对2002-2008年12个不同强度磁暴事件期间的热层大气密度变化特征进行分析,并研究对应磁暴期间大气模式NRLMSISE-00分布特征.结果表明,大磁暴期间日侧大气密度峰值从高纬到低纬的时间延迟为2h,中小磁暴期间的延迟时间为3~4h;春秋季暴时大气密度分布基本呈南北对称分布,而夏冬季大气密度的分布是夏半球大于冬半球,春秋季暴时大气密度大于夏冬季;NRLMSISE-00大气模式得到的热层大气密度很好的体现了半球分布以及季节分布的特征,但模式模拟结果偏小;Dst指数峰值比ap指数峰值更能反应大气密度的变化情况.   相似文献   

14.
对2001-2021年SOHO卫星的极紫外辐射测量数据,以及CHAMP,GRACE-A和SWARM-C卫星资料推导出的高分辨率大气密度数据进行统计分析,发现大气密度与极紫外测量值的相关系数大于密度与F10.7指数的相关系数,证实极紫外辐射在不同地方时的影响程度存在显著差异,从而驱动大气密度的周日变化。利用三颗卫星的高度差异揭示极紫外辐射对大气密度的加热效应在350~500 km范围随着高度增加而减弱。统计得到极紫外辐射影响在地方时和纬度上的空间差异:对夏季半球的影响大于冬季半球;在白天,对中纬度地区的影响高于赤道和高纬度地区;在夜间,密度对辐射的斜率在夏季半球高纬度地区存在峰值,在冬季半球中纬度存在谷值,模型DTM2000和NRLMSISE00未能准确刻画。为了改进经验模型,提出基于球谐函数的拟合方法,优于主流模型周日效应采用的表达式,对周日效应建模和修正提供有益借鉴。利用昼夜间能量传输和热层大气经向环流机制探讨了统计结果的物理机制。  相似文献   

15.
分析Jacchia70(J70)热层模式原理、美国空军高精度卫星拖曳模型(HASDM)的修正方法及选取球面调和函数的原因.推导模式密度对球谐系数(SH)的偏导数,给出利用模式密度泰勒展开进行线性化处理、迭代求解球谐系数的具体过程.针对2003年10月29日大磁暴事件,基于CHAMP和GRACE A/B卫星加速度计实测密度,进行修正方法的性能评估.统计相对误差的均值及标准差变化:改进前分别为-81.7%,74.4%;改进后分别为-5.9%,53.1%,验证了改进算法的有效性.从热层上下边界温度角度,详细分析了热层模式动态修正原理,研究结果为类HASDM修正模式的工程应用提供了理论基础.   相似文献   

16.
2015年9月20日,长征-6运载火箭在太原卫星发射中心以“一箭二十星”方式将希望-2卫星发射入轨。入轨后卫星顺利开展各项在轨试验,其中希望-2A卫星根据任务需要进行了多批次轨道控制,将轨道高度降低了60多千米。希望-2卫星通过获取热层大气密度原位数据正向探测大气密度时空分布关系,优化热层大气阻力模型,并结合多频点全球卫星导航系统(GNSS)原始测量数据及卫星激光测距(SLR)、甚长基线干涉测量(VLBI)等多体制精密测定轨试验,反向推演大气密度变化机理,为提高低轨航天器定轨预报精度获取有效连续的实测数据支撑,同时配置空间无线电台,为全球无线电爱好者提供服务。  相似文献   

17.
在太阳活动高低年的地磁平静/扰动环境下,利用不同热层大气模式J77,DTM78,MSIS00,JB2008和CHAMP加速度计反演密度,分析有无先验信息条件下的轨道预报误差.结果表明无先验信息的精密轨道预报中,热层模式的性能可能被弹道系数等参数偏差干扰,此时预报误差不能作为模式性能的评价标准.先验信息对轨道预报精度提升非常明显,尤其是地磁扰动期先进热层模式性能得以展现,轨道预报误差为无先验信息情况下的10%~25%.目前热层模式的主要缺陷存在于地磁扰动期.各模式之间的差异是:JB2008模式可以通过线性和单一频率周期项补偿,而J77及DTM78等模式还存在更多频率的误差.本文对不同情况下精密轨道预报的研究结果可为空间碎片碰撞预警等工程实践提供参考.   相似文献   

18.
    
针对经验的空间大气模型会在轨道预报中造成较大的误差,以某型号卫星作为基准航天器,提出2种不同精度的轨道预报模型作为仿真基础,以产生训练数据和测试数据。利用3种数据挖掘中的分类方法,如支持向量机(SVM)、神经网络(NN)、随机森林(RF)等方法,对空间大气模型在轨道预报时造成的误差进行监督学习,借此反演误差简化模型中大气模型的偏差并进行修正。分类器的训练结果表明,随机森林方法由于随机选择决策树、随机选择分类项目,按照最大概率反演的大气模型误差准确率高达99.99%,支持向量机次之,最大准确率仅为50.7%,前馈负向传播神经网络容易出现不学习的情况,应用效果最差。相比传统数理统计方法,本文方法具有快速处理大数据集、能够挖掘隐藏在轨道预报微小误差中的潜在信息等优势。  相似文献   

19.
对2003年(太阳活动较高年)至2007年(太阳活动低年) CHAMP卫星的热层大气密度观测数据进行了经验正交函数(EOF)分析, 得到了400 km高度上白天平均大气密度ρ的太阳活动周变化与年度变化等不同变化分量. 研究结果表明, ρ受太阳活动影响较大, 其太阳周变化分量与F10.7指数变化之间的相关系数可高达94.5 %; ρ的太阳周变化分量随纬度增加而减小, 且在中高纬地区, 南半球的值明显大于北半球的值, 在低纬地区则出现基本对称的双峰分布, 即赤道质量密度异常(EMA)结构. 在ρ的年变化中, 呈现出明显的季节变化, 即夏季低冬季高; 同时ρ的年变化幅度随太阳活动增加而增强, 随纬度增加而增强. 将本文结果与经验模式NRLMSISE00在观测条件下的输出数据进行对比, 发现两者的太阳周变化与年变化分量基本一致, 但本文观测数据的太阳周成分随纬度变化略小, 年变化幅度略大, 且NRLMSISE00模式不能再现EMA结构. 研究结果对揭示热层气候学变化特征具有重要意义.   相似文献   

20.
在日固坐标系(地磁纬度和地方时)下, 累积地方时过去24h的COSMIC(Constellation Observing System for Meteorology Ionosphere andClimate)观测资料, 通过对110$sim$750km高度范围内的电子密度进行数值积分得到各掩星点的垂直TEC值, 进而利用Kriging方法插值产生近实时的全球地方时MAGLat2.5°×2h的COSMIC TEC图. 利用2008年1月1日至2010年6月30日共30个月的COSMIC数据, 逐日构建COSMICTEC图, 将其与全球导航卫星系统服务组织(International GNSS Service,IGS)发布的全球电离层TEC图(Global Ionospheric Maps, GIMs)以及OSTM/JASON-2卫星高度计观测值分别进行比对,证明利用COSMIC掩星资料构建全球电离层垂直TEC图是可行的.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号