首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
Accelerated energetic particles in solar flares produced nuclear γ-lines in interactions with ambient solar atmosphere. Analysis of intensity of ratios between various γ-lines allows us to make estimations of abundance of elements, parameters of surrounding media and other solar characteristics. In this article we discuss the flux ratio between two lines from excited states of 12C (f15.11/f4.44) and our results of preliminary calculation of intensity ratio between two neutron capture lines at 3He and 1H (f20.58/f2.223). In particular we consider the opportunity to obtain n(3He)/n(1H) ratio during solar flares and using high-energy gamma-emission studying, based on the satellite data. Possible interpretation of spectral features observed during the January 20, 2005 solar flare is discussed. Preliminary analysis of energy spectrum in the band of 2–21 MeV gives n(3He)/n(1H) ∼ 8 × 10−4 for January 20, 2005 solar flare.  相似文献   

2.
The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400?μg/m3 and 150?μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123–0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550?nm in the pollution epicenter was within 0.75–1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532?nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001?km?1?×?sr?1 with the distribution of the main types of aerosols in the troposphere of the region within 0–12.5?km, where the most severe aerosol contamination is observed in the lower troposphere (at 3–6?km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.  相似文献   

3.
The concentrations of neutral hydrogen within the atmosphere of Venus are investigated for the period 1979–1980. During this period, the planet made nearly three orbits about the Sun, so that nearly three complete diurnal cycles were observed from the Pioneer Venus Orbiter (PVO). Values of n(H) are derived from in-situ ion and neutral composition measurements from the Orbiter Ion Mass Spectrometer (OIMS) and the Orbiter Neutral Mass Spectrometer (ONMS) using a charge exchange relationship involving O+, H+, O and CO2. The dawn bulge in the diurnal distribution of n(H), reported from the first diurnal cycle by Brinton et al., is found to persist with n(H) peaking at levels near 2 - 5 × 107/cm3 at altitudes below 165 km. At peak levels, the bulge exhibits a concentration ratio up to 400/1 relative to dayside values. Large day to day variations of up to a factor of five in n(H) are frequently encountered, and are attributed to perturbations induced by the solar wind interaction. These short term variations, plus a suggestion of some local time variation in the bulk location, make precise assessment of interannual variations in the n(H) difficult. Between the first diurnal cycle in early 1979 and the third in mid 1980, the decline in solar euv flux was of the order of 10% or less. Allowing for uncertainties due to short term variations, no clear evidence is found for an interannual variation in the hydrogen concentrations.  相似文献   

4.
Based on measurements with the interferometer spectrometer SI-1 on board of Meteor satellites the following problems are investigated: the systematic effect of the spectral response function in deriving effective radiation temperatures; the selection of ‘optimal’ spectral channels within the 15 μm region, and effects of additional molecular absorbers on the determination of the temperature profile. It can be shown that using broad-band window channels (half width ?20cm?1) the derived surface temperature is significantly different from the surface temperature derived from narrow spectral band channels (e.g. for the HIRS window channel 8 this difference is about 1° C). Simulations of some combinations of spectral channels including one proposed as an optimal approach show no significant difference in the derived temperature profile. Neglecting the ozone absorption of the 14.1 μm band leads to a change in radiance of about 1.5 mW/m2sr cm?1 and to a systematic error of the derived temperature of about ?2° C in the troposphere.  相似文献   

5.
The ROSAT data of the hot DA white dwarf HS1234+4811 were analyzed in the framework of three different assumptions for the structure of the white dwarf's atmosphere. It could be excluded that the star has a homogeneously mixed photosphere consisting of helium and hydrogen only, but from ROSAT observations alone it is not possible to decide if the object has a stratified atmosphere with an ultrathin hydrogen layer (MH ≈ 7 · 10−14M) on top of the He envelope or if heavier elements are responsible for the absorption in the soft X-ray region.  相似文献   

6.
The first unambiguous identification of ammonia in the upper atmosphere of Jupiter has been obtained from the observation of individual NH3 bands in an IUE high resolution spectrum in the 2100–2400 Å spectral range. The variation with wavelength of the strengths of these NH3 bands implies that the NH3 abundance has to be strongly reduced by photolysis in the upper jovian atmosphere. Preliminary analysis by means of scattering models shows that the ammonia mixing ratio cannot be constant with altitude. The mixing ratio NH3/H2 ranges from 5 10?8 to 5 10?7 at the 250 mb pressure level, and decreases as P or P2 toward higher altitudes.  相似文献   

7.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

8.
Recent advances have enabled simultaneous Hα and X-ray observations with substantially improved spatial, spectral, and temporal resolution. In this paper we study two events observed as part of a coordinated observing program between the Solar Maximum Mission and Sacramento Peak Observatory: the flares of 1456 UT, 7 May 1980 and 1522 UT, 24 June 1980. Using recently-developed physical models of static flare chromospheres, and corresponding theoretical Hα line profiles, we can distinguish effects of intense nonthermal electron heating from those of high conduction and pressure from the overlying flare corona. Both flares show the signature of intense chromospheric heating by fast electrons, temporally correlated with X-ray light curves at E > 27keV, and spatially associated with X-ray emission sites at E >62; 16 keV. Interpreting the Hα line profile observations using the theoretical Hα line profiles, we infer values of the thick-target input power contained in nonthermal electrons that are observationally indistinguishable (within a factor of 2–3) from those inferred from the X-ray data. Although these events are small, the energy flux values are large: of order 1011 ergs cm?2 s?1 above 20 keV.  相似文献   

9.
Beyond their role in the cycling of the major elements, carbon, nitrogen, oxygen, etc., little is known about geobiological interactions involving plants with the elements of lower abundance. Plants influence the distribution of volcanic mercury by uptake from the atmosphere and soil fluids, transport to the shoot and re-release as Hg° into the atmosphere. Release rates as high as 2.5 × 10?4 g.h?1 per kg are known but even at more typical rates, fluxes far greater than the Environmental Protection Agency calculated U.S. average annual degassing rate of 130 × 10?6 g.m?2 should exist. On a global basis, the presence or absence of vegetative cover may be a significant regulator of Hg° transport between land surfaces and the atmosphere.  相似文献   

10.
The Balloon Borne Experiment with a Superconducting Solenoid Spectrometer (BESS) was flown annually in 1993, 1994, and 1995. In this report we present the energy spectra and isotopic composition of cosmic ray H and He measured from the 1993 flight. The low energy fluxes of H and He agree with the IMP-8 satellite data for a 26 day period (7/14/93 – 8/9/93) that overlapped the BESS flight. Both 2H and 3He were well separated from 1H and 4He. The measured spectra were corrected for the atmospheric overburden and compared with the interstellar/heliospheric propagation calculations.  相似文献   

11.
The Rho Ophiuchi dark cloud region has been the subject of an extensive guest investigation using the Einstein Observatory. The set of observations comprise 14 IPC fields and 3 HRI fields. The densest part of the cloud has been observed 6 times. Forty seven sources were detected at a level > 3.5 σ and twenty more above 2 σ. The majority of these sources have optical, IR, or even radio continuum counterparts; nine are identified with known T Tauri stars, while several others are identified with stars showing H α in emission. All show a high degree of time variability; flux variations reach factors of 5 in a few hours, or 25 in a day. Apparent luminosities are in the range 10(30) – 10(31)(1) erg.s?1. The possibility that the X-ray variability is due to flares is examined. If this interpretation is correct, one source has been the seat of the largest stellar flare ever recorded in X rays [Lx = 10(32) erg.s?1, Ex ?10(36) ergs-].  相似文献   

12.
The spectra of many cool DZ white dwarfs show extremely broad resonance lines of ionized calcium and magnesium in the optical and ultraviolet region. When the line center is strongly saturated, these wings may become a significant source of additional opacity in cool white dwarf atmospheres. The omission of this opacity results in systematic errors in the predicted flux distribution and hence in the effective temperatures and element abundances. In a continuation of Homeier et al. (2007) and Allard et al. (2012), where we presented absorption spectra of Na–He in cool white dwarfs, we extend this work to the Ca+–He system.  相似文献   

13.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

14.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) was flown from Lynn Lake, Manitoba, Canada in August, 2000, during the maximum solar modulation period, with an average residual atmospheric overburden of 4.3 g/cm2. Precise spectral measurements of cosmic ray hydrogen isotopes from 0.178 GeV/n to 1.334 GeV/n were made during the 28.7 h of flight. This paper presents the measured energy spectra and their ratio, 2H/1H. The results are also compared with previous measurements and theoretical predictions.  相似文献   

15.
Stark broadening parameters - full widths at half maximum (FWHM) and shifts for 11 Re II lines have been calculated. The plasma parameters used were electron density of 1017 cm?3 and temperature from 5 000 K to 80 000 K. Calculations were performed using the simplified modified semiempirical (SMSE) approach and compared with calculations by Cowley’s approximative Stark broadening formula at 10000 K, usefull in spectrum synthesis. The results have also been considered in the atmosphere model of A type star and for DB white dwarfs.  相似文献   

16.
A reference model of the atmospheric circulation on Venus based on available observations is presented. The reference atmosphere has the following main features: (i) the entire atmosphere below 85 km moves predominantly from east to west in the planet's reference system (in the same direction as the rotation of the solid planet itself) with the possible exception of the lowest 10 km where velocities are low, (ii) a jet is present near the cloud-top level at 45° latitude in both hemispheres, with a magnitude of approximately 100 ms?1, (iii) a weak meridional (north-south component) flow directed towards either pole is superimposed on the zonal (east-west) motion at cloud-top level (about 68 km) altitudes, and, (iv) eddies or wave motions are present in the atmosphere, with amplitudes of less than 15 ms?1 in the upper atmosphere.  相似文献   

17.
Atomic oxygen concentrations derived from the nightglow components of O2(b1Σg+ ? X3Σg?) (0-0) Atmospheric Band emission profiles obtained during two rocket-borne photometer measurements of aurora are presented. The peak atomic oxygen concentrations of 2–3 × 1011 cm?3 are in better agreement with those of the MSIS-83 model than the CIRA 1972 mean reference atmosphere, although the shapes of the two derived profiles differ considerably from that of MSIS-83. The derived concentrations do not contradict the suggestion made by some investigators that the atomic oxygen concentrations in the auroral zone are depleted relative to their mid-latitude values.  相似文献   

18.
Data are presented on the zones of energetic particle precipitation at middle and low latitudes observed during and after magnetic storm injection events. Satellite measurements of the equatorial zone ion flux (~ 103 - 104 cm?2 s?1 sr?1 for E > 45 keV at 240 km) are consistent with the development of a temporary low altitude ion radiation belt at the magnetic equator. In the midlatitude ion zone the flux (~ 103 - 105 ions cm?2 s?1 sr?1 for E > 45 keV at 220 km) is directly related to magnetic activity while the midlatitude electron zone flux has a delayed response (~ 4 days).  相似文献   

19.
We present observations of flaring active regions with the Very Large Array (V.L.A. at 6 cm and 20 cm wavelengths) and the Westerbork Synthesis Radio Telescope (W.S.R.T. at 6 cm wavelength). These are compared with photospheric magnetograms (Meudon) and with Hα and offband Hα photographs (Big Bear and Ottawa River Solar Observatories). The 6 cm radiation of these active regions marks the legs of dipolar loops which have their footpoints in lower-lying sunspots. The intense, million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength H? = 600 Gauss and the height above the sunspot umbrae h = 3.5±0.5 × 109 cm. Circularly polarized horseshoe structures at 6 cm ring the sunspot umbrae. The high degree of circular polarization (?c = 95%) of the horseshoes is attributed to gyroresonant emission above sunspot? penumbrae. The 20 cm radiation of these active regions exhibits looplike coronal structures which extend across regions of opposite magnetic polarity in the underlying photosphere. The 20 cm loops are the radio wavelength counterparts of the X-ray coronal loops. We infer semilengths L = 5 × 109 cm, maximum electron temperatures Te(max) = 3 × 106 K, emission measures ∫Ne2dl = 1028 cm?5, and electron densities Ne = 109 cm?3 (or pressures p = 1 dyn cm?2) for the 20 cm bremsstrahlung. A total of eight solar bursts were observed at 6 cm or 20 cm wavelength with second-of-arc angular resolution. The regions of burst energy were all resolved with angular sizes between 5″ and 30″, brightness temperatures between 2 × 107 K and 2 × 108 K, and degrees of circular polarization between 10% and 90%. The impulsive phase of the radio bursts are located near the magnetic neutral lines of the active regions, and between the flaring Hα kernels which mark the footpoints of magnetic loops. In one case there was preburst heating in the coronal loop in which a burst occurred. Snapshot maps at 10 s intervals reveal interesting burst evolution including rapid changes of circular polarization and an impulsive burst which was physically separated from both the preburst radio emission and the gradual decay phase of the burst.  相似文献   

20.
Models of the Venus neutral upper atmosphere, based on both in-situ and remote sensing measurements, are provided for the height interval from 100 to 3,500 km. The general approach in model formulation was to divide the atmosphere into three regions: 100 to 150 km, 150 to 250 km, and 250 to 3,500 km. Boundary conditions at 150 km are consistent with both drag and mass spectrometer measurements. A paramount consideration was to keep the models simple enough to be used conveniently. Available observations are reviewed. Tables are provided for density, temperature, composition (CO2, O, CO, He, N, N2, and H), derived quantities, and day-to-day variability as a function of solar zenith angle on the day- and nightsides.Estimates are made of other species, including O2 and D. Other tables provide corrections for solar activity effects on temperature, composition, and density. For the exosphere, information is provided on the vertical distribution of normal thermal components (H, O, C, and He) as well as the hot components (H, N, C, O) on the day- and nightsides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号