首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 46 毫秒
1.
针对机载燃油泵故障数据来源较少、诊断效率较低、维护费用较高、缺乏有效故障特征的问题,利用机载燃油转输系统实验平台收集的振动信号和压力信号,提出了一种基于经验模态分解(EMD)和支持向量机(SVM)的机载燃油泵故障诊断方法。首先,利用EMD提取振动信号不同频段的能量值作为特征参量,并结合压力信号均值构造故障特征向量;其次,分别采用遗传算法(GA)、粒子群优化算法(PSO)、樽海鞘群算法(SSA)、网格搜索算法(GS)对SVM的惩罚参数和径向基函数(RBF)参数进行优化,并对优化后的SVM诊断性能进行了评估;最后,分别采用SVM、极限学习机(ELM)、BP神经网络作为分类器,并对3种分类器的诊断性能进行了评估。结果表明:采用3种群智能优化算法的SVM故障诊断率均能达到100%,寻优过程中均未陷入局部最优解,且寻优时间相当,其中GA的训练时间最短,可以采用GA对SVM参数进行寻优;当采用GA_SVM作为故障分类器时,用时较短,且故障诊断率较高,可以选用GA_SVM分类模型实现机载燃油泵的高效故障诊断。   相似文献   

2.
基于多分类AdaBoost的航空发动机故障诊断   总被引:2,自引:0,他引:2       下载免费PDF全文
对航空发动机运行数据进行数据挖掘的方法,是发动机故障诊断研究领域的重要研究内容。由于各种算法自身的局限性,通过某种单一算法很难大幅度提升故障分类的准确性。运用组合分类的AdaBoost算法,综合多个分类模型进行诊断,是提升故障识别精度的一种较好的方法。通过AdaBoost算法及其改进算法的结合,建立一种多分类的AdaBoost算法,以支持向量机(SVM)为基础分类器,进行综合诊断模型的建立。通过单位向量法、比值系数法和相关系数法将指印图中统计的故障标识数据进行处理,得到不受故障程度影响的训练数据,再进行建模。实验表明,AdaBoost相关结合算法能够显著提升分类器性能。根据实际故障案例,验证了所建立的诊断模型能够较好地用于发动机的故障诊断。   相似文献   

3.
为保障通航飞行器在低空空域的飞行安全,提出了一种基于支持向量机(SVM)的飞行冲突探测改进模型。首先,建立适应于飞行器的保护区。然后,利用改进型ID3决策树算法将搜索空间降低到局部的方法筛选具有潜在飞行冲突的飞行器,并利用随机森林(RF)选择合适训练集。最后,利用tanh函数优化容易饱和的sigmoid函数对SVM分类结果的概率映射。通过仿真验证和对比分析,结果表明:利用基于密度聚类的DBSACN算法去除异常点,将剔除产生误报和虚报的数据作为训练集优化SVM分类器,改进的飞行冲突探测模型的误报率和虚报率分别降低了0.6%和1.9%,算法执行效率得到提高,而且具有较好的抗干扰能力与稳定性。   相似文献   

4.
随着低空飞行密度不断增加,低空航行安全已引起广泛关注,由于低空环境复杂,低空飞行受地面障碍物和天气影响比商用航空显著,传统的空中交通警戒与防撞系统(TCAS)和其他冲突探测方法并不适用于低空密集飞行环境。针对传统探测方法计算量大、适用性差的不足,引入支持向量机(SVM)的二元分类方法,通过对本机和周边飞机航迹归一化处理,采用智能优化算法对关键参数进行优化,利用模拟数据对分类器进行预先训练,实现了适用于低空飞行的高效冲突探测。以大量的仿造数据对算法有效性进行了测试验证,结果表明漏警率和误警率分别控制在约0.1%和6%,克服了传统确定型方法与概率型方法难以兼顾效率与适用性的缺陷。   相似文献   

5.
高超声速滑翔飞行器(HGV)拦截问题中,轨迹预报是成功拦截的重要基础。针对HGV机动能力强、轨迹多变的特点,提出了一种基于支持向量机(SVM)和扩展卡尔曼滤波(EKF)的轨迹预报方法。在HGV的滑翔段机动模式分析的基础上,将HGV的机动运动分解为纵向运动模式和侧向运动模式,进而对运动模式的特征参数予以标定,形成SVM的训练集。建立地基单雷达轨迹跟踪模型,采用EKF对HGV滑翔段轨迹进行稳定跟踪并实现对运动模式特征参数的估计。基于SVM,建立了HGV运动识别框架,实现了对HGV滑翔段轨迹的预报。对平衡滑翔和跳跃机动2种典型机动模式进行数学仿真验证,结果表明,所提方法可以提高对该类目标的轨迹预报精度。   相似文献   

6.
针对大维数系统故障诊断中存在特征提取困难和识别率低的问题,提出基于非负矩阵分解(NMF,Non-negative Matrix Factorization)的支持向量机(SVM,Support Vector Machine)诊断方法,避免了直接对故障特征的选择和提取,实现特征降维,提高故障模式分类的准确性和速度;对于NMF中的结果随机性问题,提出用前次分解所得系数矩阵求解样本降维特征矩阵的方法,保证多次NMF分解尺度一致.实验表明该方法能对故障特征有效降维,并具有较高的诊断效率和故障识别率.  相似文献   

7.
为提高机场鸟击防范管理水平,实现探鸟雷达与多种驱鸟设备联动,提出一种基于支持向量机(SVM)的机场智能驱鸟决策方法。该方法包括训练和测试两部分。训练部分利用机场鸟类探测预警与驱赶联动系统获取的大量历史鸟情信息,结合专家知识,通过数据预处理与支持向量机训练,建立驱鸟策略分类模型;测试部分根据驱鸟实时智能决策结果,对驱鸟策略分类模型进行持续修正与优化。通过某机场的实测鸟情信息数据与若干驱鸟实例,证明驱鸟策略分类模型具有较高的决策正确率,并能够通过自身修正与优化应对各种新问题。本文方法针对实时鸟情信息,实现了多种驱鸟设备的优化组合,克服了驱鸟设备长期重复运行造成的鸟类对驱鸟设备的耐受性问题,极大改善了驱鸟效果。   相似文献   

8.
免疫支持向量机用于航空发动机磨损故障诊断   总被引:1,自引:1,他引:1       下载免费PDF全文
航空发动机在使用寿命周期内会不断磨损最终出现故障,通过对发动机油液监测铁谱分析数据的挖掘可实现磨损故障的诊断。本文研究免疫算法优化的支持向量机(SVM)在航空发动机磨损故障诊断中的运用。首先,总结了支持向量机和免疫算法的运行流程和关键算法。然后,用改进的免疫算法优化支持向量机惩罚因子、松弛变量及核函数参数。某型航空发动机的油液铁谱分析数据和加入噪声数据验证结果表明,该方法可有效实现航空发动机磨损故障诊断且具有较好的鲁棒性。最后,研究了核函数、多分类决策方法、初始种群大小、亲和力计算公式、支持向量机优化方法和归一化方法对磨损故障诊断准确率的影响,得到了最佳诊断方法。  相似文献   

9.
基于卷积神经网络的遥感图像舰船目标检测   总被引:4,自引:1,他引:4       下载免费PDF全文
针对遥感图像背景复杂、受环境因素影响大的问题,提出一种将卷积神经网络(CNN)与支持向量机(SVM)相结合的舰船目标检测方法,利用卷积神经网络可自主提取图像特征并进行学习的优点,避免了复杂的特征选择和提取过程,在复杂海况背景图像的处理中体现出较优的性能;同时,由于军舰样本获取难度大,应用迁移学习的概念,利用大量民船样本辅助军舰目标的检测,取得较好的效果。通过参数调整与实验验证,此方法在自行建立的测试集上检测率达到90.59%,对光照、环境等外界因素具有一定程度的鲁棒性。  相似文献   

10.
基于GA-SVM的GNSS-IR土壤湿度反演方法   总被引:1,自引:1,他引:1       下载免费PDF全文
针对提高大范围土壤湿度测量精度的问题,研究了土壤湿度的全球卫星导航系统干涉测量法(GNSS-IR),提出了一种基于支持向量机(SVM)的土壤湿度反演模型,利用遗传算法(GA)的自动寻优功能寻找SVM的最佳参数。结果表明,GA-SVM模型在测试集上得到的土壤湿度反演值与实测值的平均绝对百分比误差(MAPE)仅为0.69%,最大相对误差(MRE)为1.22%,线性回归方程决定系数达到了0.956 9。进一步与统计回归、粒子群优化的SVM模型(PSO-SVM)及反向传播(BP)神经网络方法进行对比,结果说明:在样本数目有限的情况下,GA-SVM方法更适用于土壤湿度的GNSS-IR技术反演,且反演精度较高,泛化性能良好。   相似文献   

11.
针对脉冲等离子体推力器(Pulsed Plasma Thruster,PPT)作为执行机构的微纳卫星姿态控制系统故障问题,采用了支持向量(Support Vector Machine,SVM)技术对脉冲等离子体推力器的两种常见故障进行检测与隔离。运用自适应遗传算法优化墨西哥草帽小波核函数参数,并结合小波分析,提高了SVM分类器的超平面寻优效率与泛化能力。最后,通过仿真分析,验证了该方法可快速准确地完成故障诊断任务,也证明了小波核函数支持向量机技术在故障诊断方面的先进性与有效性。  相似文献   

12.
针对航天器电特性监测系统识别过程中存在测试数据量大、特征维数高、样本少、计算速度慢和识别率低等问题,提出基于主成分分析(PCA)的特征提取和加权近似支持向量机(WPSVM)的在线故障诊断方法.实现了对信号故障特征的主成分分析、选择和提取,并对高维特征数据实现了降维,提高了航天器电特性在线故障诊断的准确性和速度.针对PCA中的结果选取问题,提出运用数据贡献度阈值进行数据截取的方法,有效地保证了数据的有效性与一致性.结果表明:该方法充分利用了航天器电特性监测系统的有用数据特征,有效提高了识别的精度,且计算时间较短,效率较高.   相似文献   

13.
基于支持向量机的滚动轴承状态寿命评估   总被引:1,自引:1,他引:1       下载免费PDF全文
应用状态寿命描述滚动轴承的使用寿命,并建立了滚动轴承的状态寿命评估模型.状态寿命评估模型建模的关键是振动信号的特征提取和状态的识别算法.针对滚动轴承振动的特点,提取小波包重构信号的频带能量构造特征向量,利用支持向量机作为辨识算法建立滚动轴承状态寿命评估模型.滚动轴承全寿命试验验证了模型的有效性和可信性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号