首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
新疆于田7.2 级地震前的电离层电磁扰动   总被引:6,自引:1,他引:5  
利用法国DEMETER 卫星观测的电磁、等离子体等参量的观测数据分析了2008 年3 月21日新疆于田7.2 级地震前离子温度Ti、离子密度Ni、甚低频(VLF) 磁场等出现的异常变化. Ti分析显示震中区上空出现的突变信号在更大空间多次重复出现, 作为地震异常的信度不高. 通过多次重访轨道对比发现H+ 离子密度整体变化形态一致, 但夏秋季节的峰值变化幅度是冬春季节的1 倍. 通过把2008 年的数据与2007 年和2006 年同期的重访轨道数据进行对比, 发现2008 年在于田地震前1 个月左右Ni 在峰值区呈现了显著增强的变化趋势, 并一直持续到地震前, 2008 年2 月以后的峰值幅度是其他两年同期的~1 倍多. 对于磁场频谱数据, 抽取了震中区域上空2000 km 范围内多个轨道的单频(400 Hz)信息, 并在研究区域统一纬度空间(0~60°N) 进行了时间序列对比, 结果发现地震前2 日内震中区域上空400 Hz 谱密度增加了近一个数量级, 反映空间存在明显的VLF 电磁辐射现象. 对于3 月20 日极低频段(ELF) 三分量电磁场的矢量分析显示观测时段内存在一些左旋极化电磁信号, 反映了空间电离层离子密度变化伴随ELF 电磁辐射信息. 综合分析认为, 这次地震前各参量的变化过程与目前地震孕育及电离层耦合机理相吻合.   相似文献   

2.
玉树地震前的电离层异常现象分析   总被引:5,自引:0,他引:5       下载免费PDF全文
分析了玉树地震前地基电离层探测临界频率、GPS TEC和卫星探测原位等离子体参量等多个参数的扰动变化信息, 研究了不同高度异常变化的时空关联性. 分析发现, 在地震前一天的4月13日, 多个电离层参量出现同步扰动异常, 电离层临界频率f0F2异常相对滑动中值增大40%, 异常空间上存在从震中东南向西南漂移的特性; GPS TEC异常增强15TECU (1TECU=1016m-2)左右, 分布于震中南部经度15°范围内, 且有明显的磁共轭效应; DEMETER观测的原位氧离子密度Ni(O+) 4月13日为1-4月中最强的一天, 异常分布偏向赤道区, 但仅局限在30°-50°左右的经度范围内. 综合三个参量的异常特征发现, 无论是空间的局地性还是时间上的密切关联均反映这次电离层扰动可能与玉树地震孕育有关. 结合其他观测信息, 进一步探讨了这次地震孕育过程的地震电离层耦合机理.   相似文献   

3.
DEMETER卫星记录到的电离层加热现象   总被引:1,自引:0,他引:1       下载免费PDF全文
在法国DEMETER卫星运行期间, 地基电离层加热装置SURA和HAARP开展了一系列加热试验, 记录到各类电离层异常信息, 发现电离层加热过程中卫星观测的电离层扰动信号包括HF发射泵波及边带泵波、VLF人工源增强及频谱拓展、ULF/ELF/VLF调制波、ELF电磁扰动、ULF谐振波、等离子体特征参量扰动及高能粒子沉降等. 由于传播及耦合机制的差异, 发射泵波可以穿透电离层直达卫星高度, 其观测概率最高达到68%以上, 其他扰动受发射调制模式及当地电磁环境等影响,观测概率相对较低, 均在40%左右, 有些甚至是某次试验中出现的个别事例. 结合中国地震电磁监测试验卫星飞行轨道设计及载荷配置等,对未来开展加热试验进行了分析论证, 并参考DEMETER卫星试验结果给出了一些建议.   相似文献   

4.
2009年6至7月华南地区电离层TEC扰动研究   总被引:1,自引:0,他引:1  
电离层TEC(Total Electron Content)扰动与多种扰动源相关联.2009年6至7月期间存在地震和日全食的扰动源.利用广州地区GPS监测网在2009年6至7月连续监测到的TEC数据,通过采用前15天数据的滑动窗口对数据进行处理,从时间序列和空间分布两方面分析了华南地区电离层TEC扰动特征.结果显示,2009年6至7月华南地区电离层TEC扰动和该时期发生的地震以及日全食事件可能有关联;2009年7月多个地震发生引起的电离层扰动特征为,震前出现的是正异常,发震当天或震后有可能是正异常,也有可能是负异常;7月22日日全食当天TEC扰动为正异常,推测该正异常是地磁活动、地震活动及日全食综合效应的结果.  相似文献   

5.
Geotail卫星的电场数据被用于分析近地磁尾等离子体片中电场在磁扰动(Dst<-25nT)和磁静时(Dst>-25 nT的统计分布.结果表明,伴随着地向高速离子流,在X>-16Re以内区域出现强电场(高达 5—8 mV/m).磁扰动期间强电场的幅值较磁静时大,并且出现在更靠近地球的位置.较强和较靠近地球的强电场与磁扰动时更薄的等离子体片和更接近地球的等离子体片内边界相联系.观测结果意味着磁扰动期间的亚暴可能更有效地将高能粒子注射到环电流中.这对磁暴和亚暴的关系问题的解决有重要意义.  相似文献   

6.
本文对GEOS-2卫星S329电子枪实验和S301冷等离子体电子浓度实验所得对流图象进行了综合分析比较.比较是通过Volland半经验模式将对流电场与等离子体层顶相联系的.两种观测都表明对流电场的西旋与Kp有关,并说明Volland模式在一级近似下较好地描述了同步轨道附近的对流情况.两种实验在高地磁活动时等离子体层顶大小方面有矛盾处.这种矛盾的可能原因是高磁扰日时等离子体层顶附近动力过程的复杂性.此外,S329实验所得的对流电场之晨昏不对称性也是值得注意的现象.   相似文献   

7.
震前地震孕育期地表异常增强的电场,通过大气电导率传输到电离层高度.该异常电场通过非稳态局部加热,可以在电离层高度激发声重波.基于该理论,利用一维时变中纬电离层物理模型,模拟了该扰动源对电离层电子密度的影响.结果表明,重力波引起的中性风速度扰动对电离层电子密度分布影响甚微,该机理无法解释震前电离层异常扰动现象.   相似文献   

8.
当前,遥感卫星普遍采用太阳同步轨道观测方式,其中30m分辨率的环境卫星相机采用双星组网观测,重复观测最短周期需要2天,米级/亚米级分辨率商业卫星即使采用多星组网观测,多数情况下重复观测最短周期也要1天左右。然而,由于地球同步轨道凝视成像技术实现重复观测最短周期主要取决于成像时的光电转换和信号读出过程,可以以秒计,所以在应对地震、台风、火情、汛情等诸多紧急事件中,优势极为明显。据报道,中国计划发射的高分-4卫星是地球同步轨道上的光学遥感卫星,光学分辨率为50m,将成为现有太阳同步轨道对地观测体系的重要补充。为了用好该卫星,从天地一体充分挖掘遥感图像信息的角度出发,现对地球同步轨道卫星在轨凝视成像模式有关问题进行分析。  相似文献   

9.
给出了1997年1月6—11日日地连接事件的太阳风和行星际扰动及由此产生的地磁扰动特征.利用这些资料对磁暴-环电流-对流电场的分析表明,磁暴主相(或环电流)的开始主要是IMF南向分量形成的对流电场直接驱动的结果;对流电场在磁暴主相的形成中有极为重要的作用;但在主相发展的不同阶段作用不同  相似文献   

10.
磁暴对赤道地区L波段电离层闪烁的影响研究   总被引:1,自引:1,他引:0  
利用赤道地区Vamimo站闪烁数据, 选取两次典型大磁暴时段重点分析, 对比磁暴发生前、发生时以及发生后连续几天电离层幅度闪烁强度和发生率的变化, 引入瑞利elax-elax泰勒不稳定性(Rayleigh-Taylor, R-T不稳定性)线性增长率γ0, 对磁暴影响闪烁的机制进行初步探讨. 结果表明, 磁暴可能触发闪烁发生, 也可能抑制闪烁发生, 这既与观测季节有关, 也与磁暴不同发展阶段的地方时有关. 触发发生于闪烁少发季节磁暴主相所在的午夜至黎明时段, 可能是磁层穿透电离层的东向电场所致; 抑制发生于闪烁多发季节磁暴恢复相所在的午夜前时段, 可能是西向电场作用的结果. 磁暴发生时的电场变化可能是抑制或触发闪烁的主导因素, 但仍需进一步分析研究.   相似文献   

11.
The present paper describes the variations of the GPS total electron content (TEC) from the International GNSS service network and surface latent heat flux (SLHF) from the Scientific Computing Division of the National Center for Atmospheric Research (NCAR) before the 11 March 2011 M9.0 Sendai earthquake, respectively. The analysis shows pronounced enhancements in the GPS TEC and SLHF a few days prior to the earthquake event. The maximum increase in the GPS TEC was about 30 TECu with an extended spatial distribution on a geomagnetically quiet day (Dst ? −20 nT, between two moderate geomagnetic storms), 8 March, 3 days prior to the earthquake. This giant positive disturbance was possibly associated with the impending disastrous earthquake and contributed from the enhanced solar radiation. Moreover, there were several anomalous regions of SLHF on the global map, but an area of enhanced SLHF very close to the epicenter. The purpose of this paper is to report the existence of the changes in surface and ionosphere, and show the potential application of multi-source data to identify seismic precursors.  相似文献   

12.
Space investigation includes modelling and initiation of natural processes in ionospheric-magnetospheric plasma by active experimental methods with artificial influence as a specific part. For the first time we present here the possibility of triggering the unique equatorial ionosphere phenomenon known as fountain-effect by lithospheric processes before an earthquake. Anomalous influence of earthquake preparation processes with epicenter close to magnetic equator on latitudinal distribution of foF - F-region penetration frequencies and spread-F is discussed and considered by us as an analogue of an active experiment. Using Alouette-1 data it is shown that approximately one day before the earthquake foF2 dependence on magnetic latitude looks like a double-crest curve with minimum close to epicenter. Simul taneously oblique and spread traces appeared at topside ionograms. The effect is evident during evening hours. Such kind of foF2-dependence is unusual and is not observed during the preceding days, nor some days later. So, a possible reason for the observations might be connected with generation of an anomalous electric field near the epicenter during earthquake preparation stage, which initiates a phenomenon similar to the natural fountain-effect.  相似文献   

13.
Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.  相似文献   

14.
There are extensive reports of ionospheric disturbances before the great 2008 Wenchuan earthquake, which are possibly explained by seismogenic electric field hypotheses linked with the aerosols injected in atmosphere. This paper attempts to investigate the possible change of atmospheric aerosol optical depth (AOD) associated with this earthquake by using MODIS data from both Terra and Aqua satellites. The result shows a clear enhancement of AOD along the Longmenshan faults 7 days before the quake, which is 1 day and 4 days earlier than the reported negative and positive ionospheric disturbances, respectively, and is 1 day earlier than or quasi-synchronism with other reported atmospheric anomalies including air temperature, outgoing longwave radiation and relative humidity. Particularly, the spatial distribution of AOD enhancement is very local and it is correlated well with the active faults and surface ruptures. We suggest that this unique enhancement could be associated with the Lithosphere–Atmosphere–Ionosphere coupling process during the preparation of the Wenchuan earthquake.  相似文献   

15.
The problems of physical explanation and possible mechanisms of the seismo-ionospheric effects formation are under discussion now. There are proposed different mechanisms of such effects, for example, large- and small-scale internal gravity waves (IGWs), atmospheric electric field, electromagnetic fields and emissions. However, the appearance of local large-scale seismo-ionospheric anomalies in Total Electron Content (TEC) is possible to explain only by two mechanisms: an atmospheric electric field and/or small-scale IGWs. In this paper, the simulation results for reproduction of the observed seismo-ionospheric great positive effects in TEC prior to strong Wenchuan earthquake are presented. The obtained results confirm the proposed mechanism of seismo-ionospheric effects formation by the penetration of the seismogenic electric field from the atmosphere into the ionosphere. It is suggested that so great TEC enhancement observed 3 days prior to Wenchuan earthquake could be explained by combined action of seismogenic vertical electric field and IGWs generated by the solar terminator.  相似文献   

16.
We investigate the ionospheric total electron content (TEC) anomalies occurred in the Qinghai-Tibet region before three large earthquakes (M > 7.0). The temporal and spatial TEC variations were used to detect the ionospheric possible precursors of these earthquakes. We identified two TEC enhancements in the afternoon local time 9 days and 2–3 days before each earthquake, between which a TEC decrement occurred 3–6 days before earthquakes. These anomalies happened in the area of about 30° in latitude and the maximum is localized equatorward from the epicenters. These TEC anomalies can be found in all three earthquakes regardless the geomagnetic conditions. The features of these anomalies have something in common and may have differences from those caused by geomagnetic storms. Our results suggest that these ionospheric TEC perturbations may be precursors of the large earthquakes.  相似文献   

17.
After DEMETER satellite mission (2004–2010), the launch of the Swarm satellites (Alpha (A), Bravo (B) and Charlie (C)) has created a new opportunity in the study of earthquake ionospheric precursors. Nowadays, there is no doubt that multi precursors analysis is a necessary phase to better understand the LAIC (Lithosphere Atmosphere Ionosphere Coupling) mechanism before large earthquakes. In this study, using absolute scalar magnetometer, vector field magnetometer and electric field instrument on board Swarm satellites, GPS (Global Positioning System) measurements, MODIS-Aqua satellite and ECMWF (European Centre for Medium-Range Weather Forecasts) data, the variations of the electron density and temperature, magnetic field, TEC (Total Electron Content), LST (Land Surface Temperature), AOD (Aerosol Optical Depth) and SKT (SKin Temperature) have been surveyed to find the potential seismic anomalies around the strong Ecuador (Mw = 7.8) earthquake of 16 April 2016. The four solar and geomagnetic indices: F10.7, Dst, Kp and ap were investigated to distinguish whether the preliminary detected anomalies might be associated with the solar-geomagnetic activities instead of the seismo-ionospheric anomalies. The Swarm satellites (A, B and C) data analysis indicate the anomalies in time series of electron density variations on 7, 11 and 12 days before the event; the unusual variations in time series of electron temperature on 8 days preceding the earthquake; the analysis of the magnetic field scalar and vectors data show the considerable anomalies 52, 48, 23, 16, 11, 9 and 7 days before the main shock. A striking anomaly is detected in TEC variations on 1 day before earthquake at 9:00 UTC. The analysis of MODIS-Aqua night-time images shows that LST increase unusually on 11 days prior to main shock. In addition, the AOD variations obtained from MODIS measurements reach the maximum value on 10 days before the earthquake. The SKT around epicentral region presents anomalous higher value about 40 days before the earthquake. It should be noted that the different lead times of the observed anomalies could be acknowledged based on a reasonable LAIC earthquake mechanism. Our results emphasize that the Swarm satellites measurements play an undeniable role in progress the studies of the ionospheric precursors.  相似文献   

18.
One of various mechanisms of pre-earthquake lithosphere–atmosphere–ionosphere coupling as possible explanation of the seismo-ionospheric effects is connected with the release of latent heat. Abnormal variations of ionospheric electromagnetic parameters possibly related to the 2007 Ms 6.4 Pu’er earthquake in China were reported. This paper attempts to examine whether there were abnormal changes of surface latent heat flux (SLHF) linked with this pre-earthquake ionospheric disturbances. The spatio-temporal statistical analyzes of multi-years SLHF data from USA NCEP/NCAR Reanalysis Project reveal that local SLHF enhancements appeared 11, 10 and 7 days before the Pu’er earthquake, respectively. As contrasted to the formerly reported local ionospheric Ne enhancement 9 days before the shock observed by DEMETER satellite, it is discovered that the SLHF and Ne anomalies are quasi-synchronous and have good spatial correspondence with the epicentre and the local active faults. This is valuable for understanding the seismogenic coupling processes and for recognizing earthquake anomaly with multiple parameters from integrated Earth observation system.  相似文献   

19.
We investigated the ionospheric anomalies observed before the Tohoku earthquake, which occurred near the northeast coast of Honshu, Japan on 11 March, 2011. Based on data from a ground-based Global Positioning System (GPS) network on the Korean Peninsula, ionospheric anomalies were detected in the total electron content (TEC) during the daytime a few days before earthquake. Ionospheric TEC anomalies appeared on 5, 8 and 11 March. In particular, the ionospheric disturbances on 8 March evidenced a remarkable increase in TEC. The GPS TEC variation associated with the Tohoku earthquake was an increase of approximately 20 total electron content units (TECU), observed simultaneously in local and global TEC measurements. To investigate these pre-earthquake ionospheric anomalies, space weather conditions such as the solar activity index (F10.7) and geomagnetic activity indices (the Kp and Dst indices) were examined. We also created two-dimensional TEC maps to visual the spatial variations in the ionospheric anomalies preceding the earthquake.  相似文献   

20.
On 6 February 2013, at 12:12:27 local time (01:12:27 UTC) a seismic event registering Mw 8.0 struck the Solomon Islands, located at the boundaries of the Australian and Pacific tectonic plates. Time series prediction is an important and widely interesting topic in the research of earthquake precursors. This paper describes a new computational intelligence approach to detect the unusual variations of the total electron content (TEC) seismo-ionospheric anomalies induced by the powerful Solomon earthquake using genetic algorithm (GA). The GA detected a considerable number of anomalous occurrences on earthquake day and also 7 and 8 days prior to the earthquake in a period of high geomagnetic activities. In this study, also the detected TEC anomalies using the proposed method are compared to the results dealing with the observed TEC anomalies by applying the mean, median, wavelet, Kalman filter, ARIMA, neural network and support vector machine methods. The accordance in the final results of all eight methods is a convincing indication for the efficiency of the GA method. It indicates that GA can be an appropriate non-parametric tool for anomaly detection in a non linear time series showing the seismo-ionospheric precursors variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号