首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This work shows the capability of observing Venus with a sensor originally designed for Earth remote sensing. SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY), onboard ENVISAT, successfully observed visible and near-infrared spectra from the Venusian atmosphere. The Venus spectra were simulated using a line-by-line radiative transfer model. The single scattering approximation was applied in order to consider the effects of an approximately 20 km-thick haze layer above the main cloud deck, which was considered as a reflecting cloud located in the upper atmosphere of the planet. CO2 absorption lines could be distinguished in both observed and simulated spectra and a good agreement between them was also found.  相似文献   

2.
Numerous measurements of the neutral upper atmosphere above 100 km have been made from spacecraft over Venus and over Mars. The Venus exospheric temperatures are unexpectedly low (less than 300°K near noon and less than 130°K near midnight). These very low temperatures may be partially caused by collisional excitation of CO2 vibrational states by atomic oxygen and partially by eddy cooling. The Venus atmosphere is unexpectedly insensitive to solar EUV variability. On the other hand, the Martian dayside exospheric temperature varies from 150°K to 400°K over the 11-year solar cycle, where CO2 15-μm cooling may be less effective because of lower atomic oxygen mixing ratios. On Venus, temperature increases with altitude on the dayside (thermosphere), but decreases with altitude from 100 to 150 km on the nightside (cryosphere). However, dayside Martian temperatures near solar minimum for maximum planet-sun distance and low solar activity are essentially isothermal from 40 km to 200 km. During high solar activity, the thermospheric temperatures of Mars sharply increase. The Venus neutral upper atmosphere contains CO2, O, CO, C, N2, N, He, H, D and hot nonthermal H, O, C, and N, while the dayside Mars neutral upper atmosphere contains CO2, O, O2, CO, C, N2, He, H, and Ar. There is evidence on Venus for inhibited day-to-night transport as well as superrotation of the upper atmosphere. Both atmospheres have substantial wave activity. Various theoretical models used to interpret the planetary atmospheric data are discussed.  相似文献   

3.
4.
Infrared spectra of Venus measured by means of the Fourier spectrometer aboard Venera 15 orbiter were used for retrievals of temperature profiles of the atmosphere in the altitude range from 60 to 95 km. Monotonous profiles are typical for latitudes lower than 60° latitude, but on the dayside near the equator some traces of the upper atmospheric inversion were found in the profiles. At latitudes greater than 60°N the profiles contain an isothermal or inversional part between 10 and 100 hPa pressure levels. Temperature profiles inside the “warm dipole” maxima are the same as outside of this region and consequently these optical properties should be explained only by peculiarities of cloud structure there.  相似文献   

5.
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 m3 and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance.  相似文献   

6.
The Solar Flux Radiometer (LSFR) experiment on the large probe of the Pioneer Venus (PV) mission made detailed measurements of the vertical profile of the upward and downward broadband flux of sunlight at a solar zenith angle of 65.7°. These data have been combined with cloud particle size distribution measurements on the PV mission to produce a forward-scattering model of the Venus clouds. The distribution of clouds at high altitudes is constrained by measurements from the PV orbiter. Below the clouds the visible spectrum and flux levels are consistent with Venera measurements at other solar zenith angles. The variations in the optical parameters with height and with wavelength are summarized in several figures. The model is used to evaluate the solar heating rate at cloud levels as a function of altitude, solar longitude, and latitude for use in dynamical studies.  相似文献   

7.
Based on a simplified theoretical interpretation of the composition measurements with the ONMS and OIMS experiments on Pioneer Venus, the conclusion was drawn that the rotation rate of the thermosphere should be close (within a factor of two) to that of the lower atmosphere. A more realistic three-dimensional model of the thermosphere dynamics is now being developed, considering non-linear processes, higher order modes and collisional momentum exchange between the major species CO2, CO and O, which describes the diurnal variations in temperature and composition (Niemann et al., JGR, 1980). The computed horizontal winds are about 300 m/sec near the terminators and poles. Results are also presented from a two-dimensional (quasi-axisymmetric) spectral model which describes the four day superrotation in the lower atmosphere of Venus.  相似文献   

8.
Spin-scan images from the Pioneer Venus Orbiter UV Spectrometer and the Cloud Photopolarimeter provide a set of planetary contrast measurements in the wavelength range 1990A to 3650A and phase angles from 33°–130°. The planet is darkest at the point where the UVS line of sight penetrates perpendicular to the cloud tops: thus the absorbing material responsible must be deep in the atmosphere. Sulfur dioxide absorption can explain the amount of contrast seen between 2000A and 3200A. At the longer wavelengths, the persistence of contrast requires another absorber which is deeper in the atmosphere and strongly associated with the location of the SO2. Part of the observed contrast is due to the high-lying haze discovered from Pioneer Venus polarimetry. The correlation between planetary contrast and polarization does not support large scale clearing or major vertical motions of the cloud tops as the sole cause of the observed contrast. However, a scheme in which absorbers subject to photochemical destruction are mixed upward into the cloud top region provides a consistent explanation for the origin of these markings.  相似文献   

9.
Above the ionosphere of Venus, several instruments on the Pioneer Orbiter detect correlated wave, field and particle phenomena suggestive of current-driven anomalous resistivity and auroral-type particle acceleration. In localized regions the plasma wave instrument measures intense mid-frequency turbulence levels together with strong field-aligned currents. Here the local parameters indicate that there is marginal stability for ion acoustic waves, and the electron temperature probe finds evidence that energetic primaries are present. This suggests an auroral-type energy deposition into the upper atmosphere of Venus. These results appear to be consistent with the direct measurements of auroral emissions from the Pioneer-Venus ultraviolet imaging spectrometer.  相似文献   

10.
Our current knowledge on the composition of the Venus atmosphere in the altitude range from the surface to 100 km is compiled. Gases that have been measured, and whose mixing ratios are assumed to be constant with altitude, are CO2, N2, He, Ne, Ar, and Kr. Gases that have been identified in the lower and/or middle atmosphere, but whose mixing ratios may depend on altitude, latitude and/or local time, are CO, H2O, HCl, HF, and SO2. Conflicting data or only upper limits exist on some important trace gases, such as O2, H2, and Cl2. The latter two are key constituents in the photochemistry of the middle atmosphere of Venus. The chapter concludes with a listing of the isotopic abundances of elements measured in the Venus atmosphere.  相似文献   

11.
金星火山和气候探测任务(Venus Volcano Imaging and Climate Explorer,VOICE)聚焦金星火山与热演化历史、水与板块运动、内部结构和动力学、气候演化和生命信息探索等重大科学问题,提出采用极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR) 、下视与临边结合的微波辐射探测仪(Microwave Radiometric Sounder,MWRS)和紫外–可见–近红外多光谱成像仪(Ultraviolet-Visible-Near Infrared Multispectral Imager,UVN-MSI)等三个先进的有效载荷,在350 km圆轨道上对金星全球表面和大气联合探测。 PolSAR将对金星全球表面进行高分辨多极化雷达成像;MWRS将对金星全球云下大气的热力结构和化学组成,云中可能的宜居环境及与生命相关大气成分进行探测;UVN-MSI则实现大气全貌成像、表面光谱成像和闪电检测。通过多种先进探测载荷和技术手段的结合,VOICE任务将揭示金星构造热演化历史和超温室效应机理,探索其宜居性和生命信息。VOICE任务的实施将实现国际金星研究探索中许多“零”的突破,为理解行星宜居性和太阳系演化提供极为关键的观测支持,对提升中国在国际深空探测与空间科学研究中的地位产生重大影响。   相似文献   

12.
Continued analysis of Pioneer Venus imaging and polarimetry data indicates that the average cloud-top level circulation is mainly zonal (east to west) with a small meridional component. Presence of planetary scale waves and a possible sun-related component are evident in the data. If the tracked features refer to the same vertical level, then some variability of the circulation would have to be present to account for the Pioneer and Mariner 10 cloud-tracking results. However, the implied balanced flow from the observed thermal structure analysis strongly suggests that at least some of the variations in these observations is due to apparent cloud-top variations and that the circulation itself is relatively stable.Direct cyclostrophic calculations based on the observed thermal structure of the atmosphere yield a balanced zonal circulation with distinct mid-latitude jets (peak velocities about 110–120 ms?1) located between 50 and 40 mb in each hemisphere of the planet near 45° latitude. The calculations which extend to about 40 km altitude from 80 km above the surface agree well with the observed entry probe zonal components and indicate breakdown of the balance condition near the upper and lower boundaries at low latitudes.The balanced flow results are consistent with the Mariner 10 and Pioneer cloud tracked estimates of the zonal circulation provided the effective altitude of the tracked features is slightly different at different observation periods. The features in the Pioneer Venus data would then lie on a sloping surface that extends from about 68 km (40 mb) at low latitudes to about 75 km (10 mb) in mid-latitudes. The polarization features would occur on a roughly parallel surface that is 1–2 km above the effective cloud-height surface, and Mariner 10 features would have effective altitudes somewhat lower than the Pioneer ultraviolet features. A slight asymmetry is evident in the balanced zonal circulation arising out of an asymmetry in the thermal field.Finally, the solenoids formed by intersecting isobaric and isosteric (constant specific volume) surfaces deduced from the Pioneer Venus radio occultation data show distinct evidence of a direct meridional circulation that may be important in sustaining the Venus atmospheric circulation.  相似文献   

13.
The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere – New Frontiers (CRISTA-NF) experiment on board the Russian research aircraft Geophysica measures limb emission spectra with an unprecedented vertical and horizontal resolution in the 4–15 μm wavelength region. The IR spectra measured during the SCOUT-O3 Tropical Aircraft Campaign have been analysed with respect of cloud occurrence, cloud vertical and horizontal extent, cloud spatial structures and their utilisation for trace gas retrievals. In addition indicators for ice water content and optical thickness of the clouds have been adopted. These new kinds of measurements in the upper troposphere/lower stratosphere region are especially valuable for the design and development of future space borne high resolution limb sounders.  相似文献   

14.
Radio occultation measurements of the temperature structure of the Venus atmosphere have been obtained during seven occultation “seasons” extending from December 1978 to December 1983. Approximately 123 vertical profiles of temperature from about 40 km to about 85 km altitudes have been derived. Since these measurements cover latitudes from both poles to the equator, they have shown the latitudinal dependence of thermal structure. There is a smooth transition from the troposphere to the mesosphere at latitudes below about 45°, with the tropopause at about 56 km. The troposphere then rises to about 62 km in the “collar cloud” region between about 60° and 80° latitude, where a strong temperature inversion (up to 30 K) is present. In the polar areas, 80°–90°, the mesosphere becomes isothermal and there is no inversion. This latitudinal behavior is related to the persistent circulation pattern, in which a predominantly zonal retrograde motion at latitudes below 45° gradually changes to a circumpolar vortex at the “collar cloud” latitudes. Indeed, the radio occultation data have been used in a cyclostrophic balance model to derive zonal winds in the Venus atmosphere, which showed a mid-latitude (50°–55°) jet with a speed of about 120–140 ms?1 at about 70 km altitude /1,2/. The observations obtained in 1983 and 1984 have shown that above the tropopause there is considerable temporal variability in the detailed thermal structure, suggesting that the persistent circulation pattern is subject to weather-like variability.  相似文献   

15.
This paper describes the results of ongoing technology development activities for a Venus spherical superpressure balloon capable of flying for long durations (30 days) in the middle cloud layer at an altitude of 55.5 km. Data is presented from a successful aerial deployment and inflation flight experiment on a 5.5 m diameter prototype balloon conducted at a 2.5 km altitude above the Earth. Although the balloon in that test was not released for free flight, all other steps in the deployment and inflation process were successfully executed. Experimental and computational results are also presented from an investigation of the stress concentration phenomenon at the junction of the metal end fitting and fabric end cap of the prototype Venus balloon. Good agreement was found between the simulation and experimental results and a stress concentration factor of 1.55 determined for this end cap design compared to the expectations of thin membrane theory. Finally, results are presented for a new, second-generation Venus balloon material utilizing Aclar™ film instead of Teflon. Optical property and sulfuric acid tolerance data are presented for this material based on laboratory testing of samples.  相似文献   

16.
This paper describes the design, fabrication and testing of a full scale prototype balloon intended for long duration flight in the upper atmosphere of Venus. The balloon is 5.5 m in diameter and is designed to carry a 45 kg payload at an altitude of 55 km. The balloon material is a 180 g/m2 multi-component laminate comprised of the following layers bonded together from outside to inside: aluminized Teflon film, aluminized Mylar film, Vectran fabric and a polyurethane coating. This construction provides the required balloon functional characteristics of low gas permeability, sulfuric acid resistance and high strength for superpressure operation. The design burst superpressure is 39,200 Pa which is predicted to be 3.3 times the worst case value expected during flight at the highest solar irradiance in the mission profile. The prototype is constructed from 16 gores with bi-taped seams employing a sulfuric acid resistant adhesive on the outside. Material coupon tests were performed to evaluate the optical and mechanical characteristics of the laminate. These were followed by full prototype tests for inflation, leakage and sulfuric acid tolerance. The results confirmed the suitability of this balloon design for use at Venus in a long duration mission. The various data are presented and the implications for mission design and operation are discussed.  相似文献   

17.
In-situ measurements of positive ion composition of the ionosphere of Venus are combined in an empirical model which is a key element for the Venus International Reference Atmosphere (VIRA) model. The ion data are obtained from the Pioneer Venus Orbiter Ion Mass Spectrometer (OIMS) which obtained daily measurements beginning in December 1978 and extending to July 1980 when the uncontrolled rise of satellite periapsis height precluded further measurements in the main body of the ionosphere. For this period, measurements of 12 ion species are sorted into altitude and local time bins with altitude extending from 150 to 1000 km. The model results exhibit the appreciable nightside ionosphere found at Venus, the dominance of atomic oxygen ions in the dayside upper ionosphere and the increase in prominence of atomic oxygen and deuterium ions on the nightside. Short term variations, such as the abrupt changes observed in the ionopause, cannot be represented in the model.  相似文献   

18.
地表海拔大约250\,km高度处大气非常稀薄,目前被动光学观测是该层风场探测最有效手段.Fabry-Perot干涉仪(FPI)由于具有较高能量利用率及光谱分辨率等特点,是该层大气最有效的地基风场探测仪器之一.基于采用光路缩束系统及滤光片后置(标准具之后)方法研制的小型化FPI,2014年分别在河北廊坊(39.40°N,116.65°E)和山西岢岚(38.71°N,111.58°E)进行了地基观测试验,将观测数据与反演算法相结合得到高层大气风场数据,并将数据结果与美国大气研究中心两台FPI的风场数据进行了比较研究,在气辉整体辐射较弱的情况下得到岢岚站的风速平均反演偏差为11.8 m·s-1.   相似文献   

19.
Remote sounding of high cloud top temperatures by passive methods is a difficult venture due to the semitransparency of the clouds. Window channel measurements often overestimate the cloud top temperature. In this study it is experimentally shown and supported by theoretical considerations that water vapor channels, which are originally intended to sense the high tropospheric water vapor content, are more suitable than window channels. In addition, it is shown that measurements in the H2O rotational band are superior to 6.3 μm channels due to higher intensity of the outgoing radiation and less contribution by scattering by cloud particles.  相似文献   

20.
From a critical comparison and synthesis of data from the four Pioneer Venus Probes, the Pioneer Venus Orbiter, and the Venera 10, 12, and 13 landers, models of the lower and middle atmosphere of Venus are derived. The models are consistent with the data sets within the measurement uncertainties and established variability of the atmosphere. The models represent the observed variations of state properties with latitude, and preserve the observed static stability. The rationale and the approach used to derive the models are discussed, and the remaining uncertainties are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号