首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
高精度绝对辐射定标是实现光学遥感定量化应用的重要前提。首先简要介绍了绝对辐射定标,接下来系统性地梳理国内外发展现状及发展趋势,重点分析了太阳反射谱段光学遥感卫星在轨星上绝对辐射定标的各种方法,包括遥感器上定标设备、恒星和月球定标、高精度参考交叉定标卫星和同步绝对辐射定标仪等,其中前两类已经在轨实现精度优于2%~5%,后两类计划当中精度优于1%。最后总结发展规律和发展启示,给出高精度光学遥感卫星在轨星上绝对辐射定标发展的几点讨论。  相似文献   

2.
面向全球气候变化研究和高精度气象预报对空间微波辐射测量基准的迫切需求,由于传递链路复杂导致国际微波辐射基准尚未建立,为进一步提升遥感卫星观测精度和稳定性,建立空间辐射基准溯源评价体系,前瞻性地提出高精度可溯源的空间微波辐射基准传递顶层方案和技术解决方案,明确需要突破的微波辐射基准载荷关键技术,空间微波辐射基准传递与溯源理论、方法和模型,全链路微波辐射基准溯源传递一体化验证技术,微波系统全链路物理级基准传递和误差仿真评估技术等,为空间微波辐射测量提供统一参考基准,实现高精度、高稳定、可溯源的空间微波探测能力,提升中国空间微波辐射测量的核心竞争力。  相似文献   

3.
为了使吉林一号卫星遥感数据得到更好的应用,利用月球为辐射源对吉林一号光谱卫星进行了在轨绝对辐射定标研究,以对实验室定标系数进行改进。考虑到定标系数具有时效性,将观测数据按时间分组后定标,利用ROLO模型计算卫星观测时刻月球辐照度,构建ROLO模型值与卫星观测值之间的关系并进行最小二乘拟合,从而获得19个谱段的两组定标系数。最后,将定标结果与吉林一号场地定标、高分四号卫星和SeaWiFS月球观测数据进行对比验证。结果表明:对月定标结果稳定,两组定标系数线性拟合的不确定度分别为1.72%和1.24%;在光谱形状上,利用月球定标后月球光谱曲线平滑,光谱形状与月球辐射特性一致,与场地定标相比,各波段相对大小在定性上得到极大改善;在绝对辐射值上,定标结果与高分四号卫星月球辐照度平均相对误差为8.1%,与SeaWiFS两个波段的平均误差为0.90%和7.42%。本研究说明月球定标是卫星在轨辐射定标及真实性检验的有效途径。  相似文献   

4.
地形辐射校正对获取准确的地表定量遥感精度意义重大。针对传统地形辐射校正模型不适用于高分辨率遥感影像的问题,提出了一种基于辐射传输模型,同时严控误差源的地形辐射校正方法,以资源三号01星高分辨率全色及多光谱遥感影像为例进行相关实验,实现对高分辨率遥感影像的地形辐射校正,并进行了主客观分析与评价。分析结果表明:本文提出的地形辐射校正模型和方法,能有效解决全色遥感影像在绝对辐射定标系数缺失情况下校正效果差以及如何保持高分辨率遥感影像细节等难点,较传统方法更适用于高分辨率遥感影像。   相似文献   

5.
星载多光谱遥感器太阳定标技术的进展   总被引:1,自引:0,他引:1  
星载多光谱遥感器的太阳定标器一般选择太阳作为基准光源 ,通过它将太阳辐射引入星载遥感器并调节到星载遥感器的动态范围内 ,对星载遥感器进行绝对辐射定标 ,也可对星载遥感器性能变化进行监测和校正。文章介绍一些最具代表性的星载多光谱遥感器的太阳定标器 ,并进行了分析 ,以反映太阳定标技术的现状与发展。目前采用太阳漫射器的星上定标方法可以实现全视场、全孔径、端点到端点的定标。这一方法的严重缺点是漫射器反射比随时间变化。为了解决这一问题 ,设计一种比辐射计或反射比标定装置来监测漫射器的辐亮度、反射比以及太阳常数。因此这种定标方法是很有前途的 ,在现代一些先进的星载多光谱遥感器上获得应用。通过对此方法的分析 ,提出了在太阳漫射器研制中的一些关键技术。  相似文献   

6.
空间调制光谱成像仪相对辐射校正方法研究   总被引:1,自引:0,他引:1  
空间调制干涉光谱成像仪不同于其他类型光谱成像仪,其得到的是包含地物空间信息和光谱信息的立方体干涉数据。该光谱成像仪由于原理特殊,在轨数据定标方法尚不成熟。文中介绍了一种基于统计思想来计算探测器CCD辐射模型的在轨相对辐射校正方法,并通过对"环境一号"A卫星上测得的实际在轨数据进行相应的处理,来验证该相对辐射校正处理效果。结果表明该方法可以达到修正CCD响应不均匀性、光场不均匀性和减小非线性相位偏移的双重作用,提高复原光谱的精度。  相似文献   

7.
为了对“高分五号”卫星全谱段光谱成像仪的太阳反射谱段辐射性进行长期监测与校正,并针对其谱段范围宽、精度要求高、口径大、使用寿命长等特点与要求,优化设计了可展开的漫反射板进行全光路全视场的辐射定标。定标漫反射板安装在相机光学系统的前端侧面,不影响相机正常成像,在定标时通过驱动机构展开漫反射板到相机前端,根据“高分五号”卫星轨道特点、定标能量要求及相机安装矩阵等设计定标漫反射板展开角度为39°。研制了430mm×430mm大尺寸聚四氟乙烯漫反射板组件以保证在展开时满足全光路全视场的定标,漫反射板在420~2400nm光谱范围内半球反射率高于95%,在相机观测方向BRDF变化优于25%。同时,设计了漫反射板稳定性监视辐射计用于监测漫反射板在轨性能衰减,监测精度15%。在轨定标精度分析为476%,满足指标要求。  相似文献   

8.
随着星载合成孔径雷达(SAR)应用需求的发展,为了观测目标的物理特征,可以利用辐射定标技术获取更加精确的目标后向散射系数信息。主要完成单通道单极化条带成像模式下辐射定标及其精度分析,首先从雷达方程出发,进行严格的数学推导研究单通道单极化条带模式辐射定标技术;其次给出通过对已知雷达散射截面积的目标的观测,得到SAR图像上的灰度值与绝对的雷达散射截面积之间的关系;采用测量定标常数的方法,并基于辐射定标流程建立辐射精度误差模型和计算公式,重点研究了短期相对定标和长期相对定标中各因素对精度的影响。而且针对定标常数对绝对定标精度的影响给出了详细说明,指出星载SAR系统需要定期地完成系统修正。最后以TerraSAR-X卫星为例进行了计算验证,结果表明辐射精度预估值与实测值相差小于0.05 dB。  相似文献   

9.
摘要: 对航天器星敏感间姿态测量基准偏差在轨标校及性能评估问题进行研究.建立包含敏感器安装误差与测量误差的星敏感器模型,针对两种不同形式的安装误差模型,推导出相应的观测方程,基于卡尔曼滤波方法设计相对基准偏差估计器,并比较分析两种估计器实际应用特点.然后针对在轨实际应用,给出一种基于敏感器光轴夹角的标校性能评估方法,通过数学仿真验证星敏感器相对基准偏差的标校的有效性,并基于在轨数据的标校应用获取相对基准偏差在轨特性.  相似文献   

10.
高分七号卫星(GF-7)控制系统,一方面通过研制甚高精度星敏感器和高平稳度翼板驱动机构(SADA),提高部件性能指标;另一方面采用在轨参数标定、星地闭环补偿等控制技术,进一步提高系统性能。经飞行验证表明,控制系统实现了角秒级姿态测量精度,稳定度达到10-5(°)/s量级,与同类型测绘卫星控制系统比较,姿态测量精度和稳定度均达到中国领先、国际先进的水平,使中国遥感测绘卫星控制能力得到了大幅提升。最后展望了GF-7卫星控制分系统进一步提高控制精度的发展方向。  相似文献   

11.
介绍利用青海湖辐射校正场对FY-1C、FY2B气象卫星热红外通道进行在轨辐射定标,先用CE312野外热红外辐射计在水面测量水表辐亮度,再经大气订正传递到卫星入瞳处,大气订正包括大气吸收削弱和大气产生热发射影响,这两部分对卫星信号的贡献通过辐射传输模式MODTRAN37计算出来,同时进行CE312与卫星通道光谱响应匹配,最终得到卫星入瞳处的表观辐亮度,这个辐亮度与卫星通道的计数值得到该通道绝对定标系数。我们对两颗卫星进行了多次定标,结果表明利用青海湖进行的在轨定标与星上定标系数相差5%左右,相当于3K的亮温差。  相似文献   

12.
针对高分四号(GF-4)卫星影像波段较少导致传统云检测算法难以区分云与冰雪像元的问题,提出一种多时相多通道云检测算法。该算法首先对GF-4卫星影像进行辐射定标和配准,然后利用云与典型地表的光谱差异得到潜在云像元,之后利用序列GF-4卫星影像之间的差异识别出移动的云像元,最后利用中红外波段反演地表亮度温度来去除冰雪像元。该算法在海南、辽宁和安徽3个研究区域进行验证,并将检测结果与传统单时相云检测算法、支持向量机(SVM)云检测算法和实时差分(RTD)云检测算法的检测结果进行对比。结果表明,该算法优于其他3种云检测算法,准确识别率均达到90%以上,误检率均低于5%,有利于GF-4卫星影像的进一步利用。  相似文献   

13.
以太阳为光源的卫星遥感器,可以采用6S或MODTRAN等辐射传输计算软件对其入瞳处的辐亮度进行计算。而在微光或月光条件下,遥感器是对观测目标反射的月亮辐射进行遥感观测,因此在进行辐射传输计算时需要代入月球的辐照度数据。可以利用已公布的月球表面反射率和已知的大气层外太阳辐照度来计算月球辐照度,并对6S辐射传输计算进行适当的修改进行计算。通过对月球辐照度计算原理进行了详细的描述并计算得到了波长在0.250μm~1.500μm范围内的月球表面辐照度,并给出了一个宽波段遥感器的微光动态范围。  相似文献   

14.
目前,我国空间光学遥感器正向着大型化、高精度的方向发展,辐射定标装置也随之发展进步。本文系统地介绍了大口径空间相机用积分球辐射定标装置辐射性能的测试方法。研制出一套积分球辐射性能测试装置,用于测试大口径积分球的均匀性、余弦特性和稳定性,并给出了积分球辐射定标光源的输出不确定度。文中检测的积分球辐射定标光源内径为3 000mm,出光面直径为1 000mm,得到该积分球辐射定标光源的均匀性为0.11%,在±20°范围内余弦特性最大偏移为1.1%,整个系统的输出不确定度为5.94%。  相似文献   

15.
Remote sensing of aerosol and radiation from geostationary satellites   总被引:2,自引:0,他引:2  
The paper presents a high-level overview of current and future remote sensing of aerosol and shortwave radiation budget carried out at the US National Oceanic and Atmospheric Administration (NOAA) from the US Geostationary Operational Environmental Satellite (GOES) series. The retrievals from the current GOES imagers are based on physical principles. Aerosol and radiation are estimated in separate processing from the comparison of satellite-observed reflectances derived from a single visible channel with those calculated from detailed radiative transfer. The radiative transfer calculation accounts for multiple scattering by molecules, aerosol and cloud and absorption by the major atmospheric gases. The retrievals are performed operationally every 30 min for aerosol and every hour for radiation for pixel sizes of 4-km (aerosol) and 15- to 50-km (radiation). Both retrievals estimate the surface reflectance as a byproduct from the time composite of clear visible reflectances assuming fixed values of the aerosol optical depth. With the launch of GOES-R NOAA will begin a new era of geostationary remote sensing. The Advanced Baseline Imager (ABI) onboard GOES-R will offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on the NASA Earth Observing System (EOS) satellites. The ABI aerosol algorithm currently under development uses a multi-channel approach to estimate the aerosol optical depth and aerosol model simultaneously, both over water and land. Its design is strongly inspired by the MODIS aerosol algorithm. The ABI shortwave radiation budget algorithm is based on the successful GOES Surface and Insolation Product system of NOAA and the NASA Clouds and the Earth’s Radiant Energy System (CERES), Surface and Atmospheric Radiation Budget (SARB) algorithm. In all phases of the development, the algorithms are tested with proxy data generated from existing satellite observations and forward simulations. Final assessment of the performance will be made after the launch of GOES-R scheduled in 2012.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号