首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS.  相似文献   

2.
When higher plants are exposed to elevated levels of CO2 for both short- and long-term periods photosynthetic C-gain and photoassimilate export from leaves are generally increased. Water use efficiency is increased on a leaf area basis. During long-term exposures, photosynthesis rates on leaf and whole plants bases are altered in a species specific manner. The most common pattern in C3 plants is an enhanced rate of whole plant photosynthesis in a well irradiated canopy. Nevertheless, in some herbaceous species prolonged exposure to high CO2 results in remobilization of nitrogenous reserves (i.e., leaf protein degradation) and reduced rates of mature leaf photosynthesis when assayed at ambient CO2 and O2 levels. Both short- and long-term exposures to those CO2 levels (i.e., 100 to 2,000 microliter l-1) which modify photosynthesis and export, also modify both endogenous ethylene gas (C2H4) release, and substrate, 1-aminocyclopropane-1-carboxylic acid (ACC), saturated C2H4 release rates from irradiated leaves. Photosynthetically active canopy leaves contribute most of the C2H4 released from the canopy. Prolonged growth at high CO2 results in a persistent increase in the rate of endogenous C2H4 release from leaves which can, only in part, be attributed to the increase of the endogenous pools of C2H4 pathway intermediates (e.g., methionine, M-ACC, and ACC). The capacity for increasing the rate of C2H4 release in response to short-term exposures to varying CO2 levels does not decline after prolonged growth at high CO2. When leaves, whole plants, and model canopies of tomato plants are exposed to exogenous C2H4 a reduction in the rate of photosynthesis can, in each case, be attributed to the classical effects of C2H4 on plant development and morphology. The effect of C2H4 on CO2 gas exchange of plant canopies is shown to be dependent on the canopy leaf area index.  相似文献   

3.
We are planning a short-term experiment with Superdwarf wheat on the U.S. Space Shuttle and a seed-to-seed experiment on the Russian Space Station Mir. The goals of both experiments are to observe effects of microgravity on developmental steps in the life cycle and to measure photosynthesis, respiration, and transpiration by monitoring gas exchange. This requires somewhat different hardware development for the two experiments. Ground-based research aims to understand plant responses to the environments in the space growth chambers that we will use (after some modification): the Plant Growth Unit (PGU) on the shuttle and units called Svet, Svetoblock 2, or Oasis on Mir. Low irradiance levels (100 to 250 micromoles m-2 s-1 at best) pose a particular problem. Water and nutrient supply are also potentially limiting factors, especially in the long-term experiment. Our ground-based studies emphasize responses to low light levels (50 to 400 micromoles m-2 s-1); results show that all developmental steps are delayed by low light compared with plants at 400 micromoles m-2 s-1. We are also testing various rooting substrates for the shuttle experiment. A 1:1:1 mixture of peat:perlite:vermiculite appears to be the best choice.  相似文献   

4.
Gas exchange between man and plants in a closed ecological system based on atmosphere regeneration by plant photosynthesis is made consistent by attaining the equilibrium of human CO2 discharge and the productivity of the gas consuming bioregenerator. In this case the gas exchange might be, however, qualitatively disturbed from the equilibrium in terms of oxygen making it accumulate or decrease continuously in the air of the system. Gas exchange equilibrium in terms of O2 was attained in long-term experiments by equality of the human respiration coefficient and the plant assimilation coefficient. Varying the ratio of these parameters it is possible to control the oxygen concentration in the atmosphere to be reclaimed.  相似文献   

5.
To obtain basic data for adequate air circulation for promoting plant growth in closed plant production modules in bioregenerative life support systems in space, effects of air velocities ranging from 0.1 to 0.8 m s-1 on photosynthesis in tomato seedlings canopies were investigated under atmospheric CO2 concentrations of 0.4 and 0.8 mmol mol-1. The canopy of tomato seedlings on a plug tray (0.4 x 0.4 m2) was set in a wind-tunnel-type chamber (0.6 x 0.4 x 0.3 m3) installed in a semi-closed-type assimilation chamber (0.9 x 0.5 x 0.4 m3). The net photosynthetic rate in the plant canopy was determined with the differences in CO2 concentrations between the inlet and outlet of the assimilation chamber multiplied by the volumetric air exchange rate of the chamber. Photosynthetic photon flux (PPF) on the plant canopy was kept at 0.25 mmol m-2 s-1, air temperature at 23 degrees C and relative humidity at 55%. The leaf area indices (LAIs) of the plant canopies were 0.6-2.5 and plant heights were 0.05-0.2 m. The net photosynthetic rate of the plant canopy increased with increasing air velocities inside plant canopies and saturated at 0.2 m s-1. The net photosynthetic rate at the air velocity of 0.4 m s-1 was 1.3 times that at 0.1 m s-1 under CO2 concentrations of 0.4 and 0.8 mmol mol-1. The net photosynthetic rate under CO2 concentrations of 0.8 mmol mol-1 was 1.2 times that under 0.4 mmol mol-1 at the air velocity ranging from 0.1 to 0.8 m s-1. The results confirmed the importance of controlling air movement for enhancing the canopy photosynthesis under an elevated CO2 level as well as under a normal CO2 level in the closed plant production modules.  相似文献   

6.
The greenhouse environment is a challenging artificial ecosystem in which it is possible to study selected plant/insect interaction in a controlled environment. Due to a combination of "direct" and "indirect" effects of CO2 enrichment on plant photosynthesis and plant development, canopy productivity is generally increased. In this paper, we discuss the effects of daytime and nighttime CO2 enrichment protocols on gas exchange of pepper plants (Capsicum annuum L, cv Cubico) grown in controlled environments. In addition, we present the effects of thrips, a common Insect pest, on the photosynthetic and respiratory activity of these plant canopies. Carbon dioxide has diverse effects on the physiology and mortality of insects. However, our data indicate that thrips and whiteflies, at least, are not killed "directly" by CO2 levels used to enhance photosynthesis and plant growth. Together the data suggest that the insect population is affected "indirectly" by CO2 and that the primary effect of CO2 is via its effects on plant metabolism.  相似文献   

7.
In this study, spinach plants were grown under atmospheric and low pressure conditions with constant O2 and CO2 partial pressures, and the effects of low total pressure on gas exchange rates were investigated. CO2 assimilation and transpiration rates of spinach grown under atmospheric pressure increased after short-term exposure to low total pressure due to the enhancement of leaf conductance. However, gas exchange rates of plants grown at 25 kPa total pressure were not greater than those grown at atmospheric pressure. Stomatal pore length and width were significantly smaller in leaves grown at low total pressure. This result suggested that gas exchange rates of plants grown under low total pressure were not stimulated even with the enhancement of gas diffusion because the stomatal size and stomatal aperture decreased.  相似文献   

8.
In order to predict carbon sequestration of vegetation with the future rise in atmospheric CO2 concentration, [CO2] and temperature, long term effects of high [CO2] and high temperature on responses of both photosynthesis and transpiration of plants as a whole community to environmental parameters need to be elucidated. Especially in the last decade, many studies on photosynthetic acclimation to elevated [CO2] at gene, cell, tissue or leaf level for only vegetative growth phase (i.e. before formation of reproductive organs) have been conducted all over the world. However, CO2 acclimation studies at population or community level for a whole growing season are thus far very rare. Data obtained from repeatable experiments at population or community level for a whole growing season are necessary for modeling carbon sequestration of a plant community. On the other hand, in order to stabilize material circulation in the artificial ecological system of Closed Ecology Experiment Facilities (CEEF), it is necessary to predict material exchange rates in the biological systems. In particular, the material exchange rate in higher plant systems is highly variable during growth periods and there is a strong dependence on environmental conditions. For this reason, dependencies of both CO2 exchange rate and transpiration rate of three rice populations grown from seed under differing conditions of [CO2] and day/night air temperature (350 microL CO2 L-1, 24/17 degrees C (population A); 700 microL CO2 L-1, 24/17 degrees C (population B) and 700 microL CO2 L-1, 26/19 degrees C (population C)) upon PPFD, leaf temperature and [CO2] were investigated every two weeks during whole growing season. Growth of leaf lamina, leaf sheath, panicle and root was also compared. From this experiment, it was elucidated that acclimation of instantaneous photosynthetic response of rice population to [CO2] occurs in vegetative phase through changes in ratio of leaf area to whole plant dry weight, LAR. But, in reproductive growth phase (i.e. after initiation of panicle formation), the difference between photosynthetic response to [CO2] of population A and that of population B decreased. Although LAR of population C was almost always less than that of population A, there was no difference between the photosynthetic response to [CO2] of population A at 24 degrees C and that of population C at 26 degrees C for its whole growth period. These results are useful to make a model to predict carbon sequestration of rice community, which is an important type of vegetation especially in Asia in future global environmental change.  相似文献   

9.
The cultivation of wheat (Triticum aestivum L.) was performed in controlled environment chambers with the continuous monitoring of photosynthesis, dark respiration, transpiration and main nutrient uptakes. A protocol in twin chambers was developed to compare the specific effects of low O2 and high CO2. Each parameter is able to influence photosynthesis but different effects are obtained In the development, fructification and seed production, because of the different effects of each parameter on the ratio of reductive to oxidative cycle of carbon. The first main conclusion is that low level of O2, at the same rate of biomass production, strongly acts on the rate of ear appearance and on seed production. Ear appearance was delayed and seed production reduced with a low O2 treatment (approximately 4%). The O2 effect was not mainly due to the repression of the oxidative cycle. The high CO2 treatment (700 to 900 microl l-1) delayed ear appearance by 4 days but did not reduce seed production. High CO2 treatment also reduced transpiration by 20%. Two hypothesis were proposed to explain the similarities and the difference in the O2 and CO2 effects on the growth of wheat.  相似文献   

10.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   

11.
Soybean and potato plants were grown in controlled environments at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa. The highest yields of edible biomass occurred at 0.10 kPa for both species, with higher CO2 levels being supraoptimal, but not injurious to the plants. Stomatal conductance rates of upper canopy leaves were lowest at 0.10 kPa CO2, while conductance rates at 0.50 and 1.00 kPa were significantly greater than 0.10 kPa. Total water use by the plants was greatest at the highest CO2 pressures (i.e. 0.50 and 1.00 kPa); consequently, water use efficiencies (biomass produced/water used) were low at the highest CO2 pressures. Based on previous CO2 studies in the literature, the increased conductance and water use at the highest CO2 pressures were surprising and pose interesting challenges for managing plants in a CELSS, where CO2 pressures may exceed optimal levels.  相似文献   

12.
As part of a Bio-regenerative Life Support System (BLSS) for long-term space missions, plants will likely be grown at reduced pressure. This low pressure will minimize structural requirements for growth chambers on missions to the Moon or Mars. However, at reduced pressures the diffusivity of gases increases. This will affect the rates at which CO2 is assimilated and water is transpired through stomata. To understand quantitatively the possible effects of reduced pressure on plant growth, CO2 and H2O transport were calculated for atmospheres of various total pressures (101, 66, 33, 22, 11 kPa) and CO2 concentrations (0.04, 0.1 and 0.18 kPa). The diffusivity of a gas is inversely proportional to total pressure and shows dramatic increases at pressures below 33 kPa (1/3 atm). A mathematical relationship based on the principle of thermodynamics was applied to low pressure conditions and can be used for calculating the transpiration and photosynthesis of plants grown in hypobaria. At 33 kPa total pressure, the stomatal conductance increases by a factor of three with the boundary layer conductance increasing by a factor of ∼1.7, since the leaf conductance is a function of both stomatal and the boundary layer conductance, the overall conductance will increase resulting in significantly higher levels of transpiration as the pressure drops. The conductance of gases is also regulated by stomatal aperture in an inverse relationship. The higher CO2 concentration inside the leaf air space during low pressure treatments may result in higher CO2 assimilation and partial stomata closure, resulting in a decrease in transpiration rate. The results of this analysis offer guidelines for experiments in pressure and high CO2 environments to establish ideal conditions for minimizing transpiration and maximizing the plant biomass yield in BLSS.  相似文献   

13.
Knowledge on air pressure impacts on plant processes and growth is essential for understanding responses to altitude and for comprehending the way of action of aerial gasses in general, and is of potential importance for life support systems in space. Our research on reduced air pressure was extended by help of a new set-up comprising two constantly ventilated chambers (283 L each), allowing pressure gradients of +/-100 kPa. They provide favourable general growth conditions while maintaining all those factors constant or at desired levels which modify the action of air pressure, e.g., water vapour pressure deficit and air mass flow over the plants. Besides plant growth parameters, transpiration and CO2 gas exchange are determined continuously. Results are presented on young tomato plants grown hydroponically, which had been treated with various combinations of air pressure (400-700-1000 hPa), CO2 concentration and wind intensity for seven days. At the lowest pressure transpiration was enhanced considerably, and the plants became sturdier. On the other hand growth was retarded to a certain extent, attributable to secondary air pressure effects. Therefore, even greater limitations of plant productivity are expected after more extended periods of low pressure treatment.  相似文献   

14.
An initial experiment in the Laboratory Biosphere facility, Santa Fe, New Mexico, was conducted May-August 2002 using a soil-based system with light levels (at 12 h per day) of 58-mol m-2 d-1. The crop tested was soybean, cultivar Hoyt, which produced an aboveground biomass of 2510 grams. Dynamics of a number of trace gases showed that methane, nitrous oxide, carbon monoxide, and hydrogen gas had initial increases that were substantially reduced in concentration by the end of the experiment. Methane was reduced from 209 ppm to 11 ppm, and nitrous oxide from 5 ppm to 1.4 ppm in the last 40 days of the closure experiment. Ethylene was at elevated levels compared to ambient during the flowering/fruiting phase of the crop. Soil respiration from the 5.37 m2 (1.46 m3) soil component was estimated at 23.4 ppm h-1 or 1.28 g CO2 h-1 or 5.7 g CO2 m-2 d-1. Phytorespiration peaked near the time of fruiting at about 160 ppm h-1. At the height of plant growth, photosynthesis CO2 draw down was as high as 3950 ppm d-1, and averaged 265 ppm h-1 (whole day averages) during lighted hours with a range of 156-390 ppm h-1. During this period, the chamber required injections of CO2 to continue plant growth. Oxygen levels rose along with the injections of carbon dioxide. Upon several occasions, CO2 was allowed to be drawn down to severely limiting levels, bottoming at around 150 ppm. A strong positive correlation (about 0.05 ppm h-1 ppm-1 with r2 about 0.9 for the range 1000-5000 ppm) was observed between atmospheric CO2 concentration and the rate of fixation up to concentrations of around 8800 ppm CO2.  相似文献   

15.
The effects of elevated CO2 on plant growth are reviewed and the implications for crop yields in regenerative systems are discussed. There is considerable theoretical and experimental evidence indicating that the beneficial effects of CO2 are saturated at about 0.12% CO2 in air. However, CO2 can easily rise above 1% of the total gas in a closed system, and we have thus studied continuous exposure to CO2 levels as high as 2%. Elevating CO2 from 340 to 1200 micromoles mol-1 can increase the seed yield of wheat and rice by 30 to 40%; unfortunately, further CO2 elevation to 2500 micromoles mol-1 (0.25%) has consistently reduced yield by 25% compared to plants grown at 1200 micromoles mol-1; fortunately, there was only an additional 10% decrease in yield as the CO2 level was further elevated to 2% (20,000 micromoles mol-1). Yield increases in both rice and wheat were primarily the result of increased number of heads per m2, with minor effects on seed number per head and seed size. Yield increases were greatest in the highest photosynthetic photon flux. We used photosynthetic gas exchange to analyze CO2 effects on radiation interception, canopy quantum yield, and canopy carbon use efficiency. We were surprised to find that radiation interception during early growth was not improved by elevated CO2. As expected, CO2 increased quantum yield, but there was also a small increase in carbon use efficiency. Super-optimal CO2 levels did not reduce vegetative growth, but decreased seed set and thus yield. The reduced seed set is not visually apparent until final yield is measured. The physiological mechanism underlying CO2 toxicity is not yet known, but elevated CO2 levels (0.1 to 1% CO2) increase ethylene synthesis in some plants and ethylene is a potent inhibitor of seed set in wheat.  相似文献   

16.
There is important progress now in the identifications and measurements of primary (parent) molecules in the inner coma of Comet Halley. H2O, CO2 and CO are definitely in the list, CH and some complicate organic molecules are suspected. Gas production rate for water vapor is QH2O 1030 s−1. The bulk of data doesn't contradict to the Whipple model of nucleus (with clathrate modification). Pronounced spatial structure of gaseous flow in the coma was observed, but in general measured properties of neutral gas in the coma of Comet Halley are not very different from predicted. Situation for dust is different. In situ dust measurements show that size spectrum and optical properties of particles in coma are substantively declining from predicted on the base of groundbased photometry. However there are discrepancies between Vega and Giotto dust counter data. Dust in the inner coma didn't prevent the succesful imaging of nucleus by TV on Vega 1 and 2.  相似文献   

17.
This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (< 4 micromol mol-1); sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas alter two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.  相似文献   

18.
The variable pressure growth chamber (VPGC) was used in a 34-day functional test to grow a wheat crop using reduced pressure (70 kPa) episodes totalling 131 hours. Primary goals of the test were to verify facility and subsystem performance at 70 kPa and to determine responses of a wheat stand to reduced pressure and modified partial pressures of carbon dioxide and oxygen. Operation and maintenance of the chamber at 70 kpa involved continuous evacuation of the chamber atmosphere, leading to CO2 influx and efflux. A model for calculating CO2-exchange rates (net photosynthesis and dark respiration) was developed and tested and involved measurements of chamber leakage to determine appropriate corrections. Measurement of chamber leakage was based on the rate of pressure change over a small pressure increment (70.3 to 72.3 kPa) with the pump disabled. Leakage values were used to correct decreases and increases in chamber CO2 concentration resulting from net photosynthesis (Ps) and dark respiration (DR), respectively. Composite leakage corrections (influx and efflux) at day 7 of the test were 9% and 19% of the changes measured for Ps and DR, respectively. On day 33, composite corrections were only 3% for Ps and 4% for DR. During the test, the chamber became progressively tighter; the leak rate at 70.3 kPa decreasing from 2.36 chamber volumes/day pretest, to 1.71 volumes/day at the beginning of the test, and 1.16 volumes/day at the end of the test. Verification of the short-term leakage tests (rate of pressure rise) were made by testing CO2 leakage with the vacuum pump enabled and disabled. Results demonstrate the suitability of the VPGC or conducting gas exhange measurements of a crop stand at reduced pressure.  相似文献   

19.
Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol−1) and another which used various light intensities (100, 300, 500 and 700 μmol m−2 s−1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号