首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
王殿恺  王伟东  卿泽旭  李倩 《推进技术》2017,38(7):1675-1680
高超声速飞行器面临较高的波阻问题。为揭示基于脉冲激光能量沉积的减阻机理,并为激光减阻新方法提供科学指导依据,在马赫数为5.0的高超声速激波风洞内开展了单脉冲激光与弓形激波相互作用过程的实验研究。结合数值模拟结果,揭示了单脉冲激光的减阻机理。通过数值模拟研究了高重频激光与弓形激波相互作用的减阻机理。结果表明:在脉冲激光引致的激波与弓形激波相互作用的特定时刻,钝头体表面附近形成了低压低密度通道,这是钝头体阻力降低的原因。高重频激光引致的激波串可在高超声速流场中追赶合并形成锥形的准静态波,准静态波与弓形激波相互作用增大了弓形激波的脱体距离,弓形激波后压力和温度重新分布,形成相对稳定的流场结构,减阻率达到19%。  相似文献   

2.
激光能量沉积降低钝头体驻点压力机制分析   总被引:2,自引:2,他引:0       下载免费PDF全文
王殿恺  洪延姬  李倩 《推进技术》2014,35(2):172-177
针对高超声速飞行器表面驻点压力较高的问题,在马赫数5的来流条件下,分别采用单脉冲和高重频激光能量注入的方式控制弓形激波。将数值模拟结果与高时空分辨率纹影照片以及驻点压力测量结果相对比,分析了单脉冲激光能量与高超声速流场弓形激波的相互作用过程,结果表明透镜效应是激光能量沉积降低钝头体驻点压力的原因。单脉冲激光能量产生的低压区不能维持,降低驻点压力效率低,因此高重频是更有效的激光能量注入方式。优化了频率为80kHz、功率为自由流焓流6.6%的激光能量沉积位置,计算结果表明当沉积位置与钝头体表面的距离等于钝头体直径的1.5倍时,驻点压力降低了40%。在优化位置提高沉积能量大小至36.9%,可将驻点压力和热流分别降低83.3%和56.9%。  相似文献   

3.
斜激波与弓形激波相互作用的彩虹纹影实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
斜激波与弓形激波相互作用形成的波系结构可以分为六类,其中IV型激波干扰产生了超声速"喷流",产生了极高的热载和压载。基于彩虹纹影显示技术,实验获得了六类激波干扰彩虹纹影照片,分析了各类激波干扰的波系结构。通过数值计算,获得了有无斜激波干扰的条件下,壁面附近温度与压强的分布,讨论了IV型激波干扰产生极高热载和压载的原因。研究表明,激波干扰发生以后,钝头体表明压载与热载急剧增加,尤其是IV型激波干扰,形成的超声速"喷流"射向钝头体壁面的超声速射流,会导致峰值压力剧烈升高,其数量相当于来流静压的近40倍,驻点附近的热流升高将近8倍。  相似文献   

4.
针对高超声速二元进气道钝化唇缘位置可能出现的第Ⅳ类激波-激波干扰流动中的非定常振荡问题,采用基于有限体积方法结合网格自适应技术的VAS2D程序,数值求解二维可压缩层流Navier-Stokes方程,细致刻画了第Ⅳ类激波-激波干扰非定常流场中的复杂波系结构、壁面压力和热流分布,重点考察了入射激波位置、入射激波强度以及钝头体外形等对第Ⅳ类激波-激波干扰流动特性影响较为敏感的因素及其影响规律。数值模拟结果表明:第Ⅳ类激波-激波干扰流动可能出现非定常振荡,也可能呈现相对稳定的状态,入射激波条件和钝头体外形均可能对第Ⅳ类激波-激波干扰流动非定常性的显现及其振荡特征产生显著影响。采用无量纲的Strouhal数表征流动的非定常性,在文中数值模拟条件下,入射激波强度增大或者钝头体外形变钝,均会使得Strouhal数减小,而壁面热、力载荷有增大的趋势。合理地选择钝头体外形可望减小第Ⅳ类激波-激波干扰出现的比率,有效抑制流动中的非定常振荡现象,降低激波-激波干扰带来的热流和压力脉动峰值。  相似文献   

5.
采用激波风洞实验与数值模拟相结合的方法,对高超声速带凹腔钝头体的第IV类激波干扰非定常振荡特性进行了考察和分析。结果表明,随着入射激波与弓形激波相对位置的不同,第IV类激波干扰既可能出现稳定的波系干扰结构,也可能出现较为剧烈的非定常振荡现象。在实验条件下,观察到了高频前后振荡和低频上下振荡两种不同的振荡模式。数值模拟结果与实验吻合较好,超声速射流与凹腔的耦合作用在振荡过程中起到了关键作用。  相似文献   

6.
对吸气式飞行器进气道唇口处三维曲面激波/弓形激波干扰流场进行数值模拟,利用典型三维气动干扰试验对采用的数值计算方法进行验证。利用拼接网格技术及逆距离加权插值方法获得入口处流场的非守恒变量,作为激波干扰研究的入口边界条件。数值模拟表明,唇口处激波干扰流动的三维效应十分显著,曲面激波与弓形激波产生斜交,尽管唇口前缘半径很小,但Edney提出的6类激波干扰类型可能沿唇口展向方向同时存在;第Ⅲ和Ⅳ类激波/激波干扰的诱导使得唇口热流分布异常严酷;激波相交处形成斜向“伤疤”状局部高热流条带,峰值热流达到参考热流的4~6倍,可能引起唇口结构的局部烧蚀或破坏。   相似文献   

7.
卿泽旭  洪延姬  王殿恺  张斌 《推进技术》2017,38(7):1661-1668
为了研究纳秒脉冲激光能量沉积减小高超声速飞行器波阻的机理和规律,首先要研究纳秒脉冲激光能量在静止空气中的沉积现象。提出一种新方法测量了激光能量吸收率。并采用高分辨率纹影系统,对纳秒脉冲Nd:YAG固体激光器(波长532nm,最大激光能量368m J/pulse)击穿静止空气后所形成的等离子体热核进行观测。基于FLUENT软件并编写UDF,结合非对称能量沉积模型和空气等离子体参数,采用层流模型、Roe-FDS通量格式对激光能量沉积后的流动现象进行了数值模拟。结果表明,激光能量吸收率随着入射激光能量的增大而不断增大,并最终稳定在0.45左右。纳秒脉冲激光能量沉积后的流场纹影序列图像很好地呈现了爆炸波的传播、等离子体热核的演变和涡环的形成。激光能量沉积后60~120μs,涡环的涡核平均直径基本不变,且与入射激光能量大小呈二次函数关系。爆炸波约在t=60μs之后衰减至近似声波,此后其波速受入射激光能量大小的影响较小。数值模拟结果表明,Richtmyer-Meshkov不稳定性和激光能量的非对称沉积,是等离子体演化出尖刺的原因。  相似文献   

8.
采用直接数值模拟方法对有攻角的高超声速7°~34°锥裙开展了数值研究,通过对比0°、90°、180°周向子午面,评估了三维横流效应对激波/边界层干扰的影响规律和作用机制,包括壁面压力、摩阻、热流分布,分离泡非定常运动,再附边界层演化等。研究发现,不同周向站位均出现流动分离,横流区、迎风区内复杂激波结构与边界层相互作用导致壁面压力、摩阻、热流显著升高。热流与压力的比值在干扰区上升后由于再附降低,而热流与摩阻的雷诺比拟关系在分离区则完全失效。分离泡面积脉动的功率谱结果表明,分离泡非定常膨胀/收缩运动呈低频特征,且分离泡呼吸与激波低频振荡在横流区密切相关,在迎风区存在迟滞,而在背风区不相关。速度脉动场的本征正交分解结果表明,分离区的低频特征与低阶模态相应的剪切层附近大尺度结构相关。对下游再附边界层演化分析指出,攻角的存在导致雷诺应力在再附点附近大幅增强,其流向分量的恢复最为迅速,雷诺应力分量的峰值位置在背风区沿流向持续外移,而在迎风区、横流区已迅速向内层恢复。此外,雷诺应力各向异性不变量分布进一步表明干扰下游的近壁区湍流各向异性峰值在背风区弱于迎风区。  相似文献   

9.
孙东  刘朋欣  沈鹏飞  童福林  郭启龙 《航空学报》2021,42(12):124681-124681
高超声速激波/边界层干扰比超声速工况下具有更强的可压缩效应,再附之后会形成极高的局部力/热载荷,严重影响飞行器飞行安全。而激波/湍流边界层干扰区附近流动的三维特性使得流动更加复杂而难以预测。采用直接数值模拟对高超声速条件下的柱-裙激波/湍流边界层干扰进行了详细研究,特别是对Görtler涡结构对分离泡、物面压力和热流造成的展向差异开展了定性和定量分析。研究发现,干扰区附近的分离泡结构呈现出明显的三维效应,且Görtler涡展向分离位置截面的分离泡要明显小于再附位置,而这两个截面上分离泡的运动基本同步,没有明显的延迟或超前现象。物面压力和热流在展向出现显著的不均匀性,展向再附位置的平均压力和热流要比展向分离位置分别高13%和16.2%,脉动压力和热流比展向分离位置分别高28%和20%。截面流向速度特征正交分解结果显示两个位置上的能量都集中在剪切层附近,并且展向再附位置上低频模态占有更高的能量。在采用模态重构流场分析分离区面积发现,展向分离位置重构误差更小,而展向再附位置上的重构误差收敛更快。  相似文献   

10.
压缩拐角激波与旁路转捩边界层干扰数值研究   总被引:5,自引:4,他引:1  
为了研究激波与旁路转捩边界层的干扰机理,采用直接数值模拟(DNS)方法对来流马赫数Ma∞=2.9,24°压缩拐角内激波与转捩边界层的相互作用进行了系统的研究。考察了旁路转捩干扰下压缩拐角内分离区形态和激波波系结构的典型特征。比较了转捩干扰与湍流干扰流动结构的差异,并分析了造成差异的原因。研究了拐角内转捩边界层的演化特性,探讨了转捩干扰下脉动峰值压力和峰值摩阻的分布规律及形成机制。研究结果表明:相较于湍流干扰,两侧发卡涡串的展向挤压使得分离区起始点以V字型分布,且分离激波沿展向以破碎状态为主,激波脚呈现多层结构;拐角内的干扰作用急剧加速了边界层的转捩过程;转捩干扰下的拐角内峰值脉动压力以单峰结构出现在分离区的下游,同时干扰区内的强湍动能和高雷诺剪切应力使得其局部峰值摩阻系数要高于湍流干扰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号