首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We review observations of extended regions of radio emission in clusters; these include diffuse emission in ‘relics’, and the large central regions commonly referred to as ‘halos’. The spectral observations, as well as Faraday rotation measurements of background and cluster radio sources, provide the main evidence for large-scale intracluster magnetic fields and significant densities of relativistic electrons. Implications from these observations on acceleration mechanisms of these electrons are reviewed, including turbulent and shock acceleration, and also the origin of some of the electrons in collisions of relativistic protons by ambient protons in the (thermal) gas. Improved knowledge of non-thermal phenomena in clusters requires more extensive and detailed radio measurements; we briefly review prospects for future observations.  相似文献   

2.
In this paper we review the possible mechanisms for production of non-thermal electrons which are responsible for the observed non-thermal radiation in clusters of galaxies. Our primary focus is on non-thermal Bremsstrahlung and inverse Compton scattering, that produce hard X-ray emission. We first give a brief review of acceleration mechanisms and point out that in most astrophysical situations, and in particular for the intracluster medium, shocks, turbulence and plasma waves play a crucial role. We also outline how the effects of the turbulence can be accounted for. Using a generic model for turbulence and acceleration, we then consider two scenarios for production of non-thermal radiation. The first is motivated by the possibility that hard X-ray emission is due to non-thermal Bremsstrahlung by nonrelativistic particles and attempts to produce non-thermal tails by accelerating the electrons from the background plasma with an initial Maxwellian distribution. For acceleration rates smaller than the Coulomb energy loss rate, the effect of energising the plasma is to primarily heat the plasma with little sign of a distinct non-thermal tail. Such tails are discernible only for acceleration rates comparable or larger than the Coulomb loss rate. However, these tails are accompanied by significant heating and they are present for a short time of <106 years, which is also the time that the tail will be thermalised. A longer period of acceleration at such rates will result in a runaway situation with most particles being accelerated to very high energies. These more exact treatments confirm the difficulty with this model, first pointed out by Petrosian (Astrophys. J. 557:560, 2001). Such non-thermal tails, even if possible, can only explain the hard X-ray but not the radio emission which needs GeV or higher energy electrons. For these and for production of hard X-rays by the inverse Compton model, we need the second scenario where there is injection and subsequent acceleration of relativistic electrons. It is shown that a steady state situation, for example arising from secondary electrons produced from cosmic ray proton scattering by background protons, will most likely lead to flatter than required electron spectra or it requires a short escape time of the electrons from the cluster. An episodic injection of relativistic electrons, presumably from galaxies or AGN, and/or episodic generation of turbulence and shocks by mergers can result in an electron spectrum consistent with observations but for only a short period of less than one billion years.  相似文献   

3.
In this paper we review the possible radiation mechanisms for the observed non-thermal emission in clusters of galaxies, with a primary focus on the radio and hard X-ray emission. We show that the difficulty with the non-thermal, non-relativistic Bremsstrahlung model for the hard X-ray emission, first pointed out by Petrosian (Astrophys. J. 557, 560, 2001) using a cold target approximation, is somewhat alleviated when one treats the problem more exactly by including the fact that the background plasma particle energies are on average a factor of 10 below the energy of the non-thermal particles. This increases the lifetime of the non-thermal particles, and as a result decreases the extreme energy requirement, but at most by a factor of three. We then review the synchrotron and so-called inverse Compton emission by relativistic electrons, which when compared with observations can constrain the value of the magnetic field and energy of relativistic electrons. This model requires a low value of the magnetic field which is far from the equipartition value. We briefly review the possibilities of gamma-ray emission and prospects for GLAST observations. We also present a toy model of the non-thermal electron spectra that are produced by the acceleration mechanisms discussed in an accompanying paper Petrosian and Bykov (Space Sci. Rev., 2008, this issue, Chap. 11).  相似文献   

4.
It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel’dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.  相似文献   

5.
6.
Young pulsars surrounded by supernova remnants can power synchrotron nebulae through the injection of relativistic particles. Inverse Compton scattering by the high-energy electrons and positrons can produce TeV gamma-ray emission strong enough to be detectable by ground-based telescopes. The Crab nebula is the archetypical example of a gamma-ray plerion and was the first detected TeV source. The observed spectrum is consistent with predictions of synchrotron-self Compton models. This paper will review such models for the Crab and other plerions. Inverse-Compton scattering on other soft photon sources, particularly the 2.7K microwave background, may also be detectable in older remnants.  相似文献   

7.
X-ray spectra of galaxy clusters are dominated by the thermal emission from the hot intracluster medium. In some cases, besides the thermal component, spectral models require additional components associated, e.g., with resonant scattering and charge exchange. The latter produces mostly underluminous fine spectral features. Detection of the extra components therefore requires high spectral resolution. The upcoming X-ray missions will provide such high resolution, and will allow spectroscopic diagnostics of clusters beyond the current simple thermal modeling. A representative science case is resonant scattering, which produces spectral distortions of the emission lines from the dominant thermal component. Accounting for the resonant scattering is essential for accurate abundance and gas motion measurements of the ICM. The high resolution spectroscopy might also reveal/corroborate a number of new spectral components, including the excitation by non-thermal electrons, the deviation from ionization equilibrium, and charge exchange from surface of cold gas clouds in clusters. Apart from detecting new features, future high resolution spectroscopy will also enable a much better measurement of the thermal component. Accurate atomic database and appropriate modeling of the thermal spectrum are therefore needed for interpreting the data.  相似文献   

8.
This review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on three physical processes basic to energetic particle phenomena: (1) the acceleration of particles in tenuous plasmas; (2) the propagation of energetic charged particles in a disordered magnetic field, and (3) the interaction of energetic charged particles with tenuous plasmas to produce electromagnetic radiation. Because these electrons are frequently accelerated and emitted by the Sun, mostly in small and relatively simple flares, it is possible to define a detailed physical picture of these processes.In many small solar flares non-relativistic electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. Non-relativistic electrons exhibit a wide variety of propagation modes in the interplanetary medium, ranging from diffusive to essentially scatter-free. This variability in the propagation may be explained in terms of the distribution of interplanetary magnetic field fluctuations. Type III solar radio burst emission is generated by these electrons as they travel out to 1 AU and beyond. Recent in situ observations of these electrons at 1 AU, accompanied by simultaneous observations of the low frequency radio emission generated by them at 1 AU provide quantitative information on the plasma processes involved in the generation of type III bursts.  相似文献   

9.
X-Rays From Mars     
X-rays from Mars were first detected in July 2001 with the satellite Chandra. The main source of this radiation was fluorescent scattering of solar X-rays in its upper atmosphere. In addition, the presence of an extended X-ray halo was indicated, probably resulting from charge exchange interactions between highly charged heavy ions in the solar wind and neutrals in the Martian exosphere. The statistical significance of the X-ray halo, however, was very low. In November 2003, Mars was observed again in X-rays, this time with the satellite XMM-Newton. This observation, characterized by a considerably higher sensitivity, confirmed the presence of the X-ray halo and proved that charge exchange is indeed the origin of the emission. This was the first definite detection of charge exchange induced X-ray emission from the exosphere of another planet. Previously, this kind of emission had been detected from comets (which are largely exospheres) and from the terrestrial exosphere. Because charge exchange interactions between atmospheric constituents and solar wind ions are considered as an important nonthermal escape mechanism, probably responsible for a significant loss of the Martian atmosphere, X-ray observations may lead to a better understanding of the present state of the Martian atmosphere and its evolution. X-ray images of the Martian exosphere in specific emission lines exhibited a highly anisotropic morphology, varying with individual ions and ionization states. With its capability to trace the X-ray emission out to at least 8 Mars radii, XMM-Newton can explore exospheric regions far beyond those that have been observationally explored to date. Thus, X-ray observations provide a novel method for studying processes in the Martian exosphere on a global scale.  相似文献   

10.
The X-ray emission from the intracluster gas is a rich source of information on the metal abundance, evolution and mass profile of clusters. Methods for determining the mass of gas are reviewed; the total mass is uncertain. The best data so far available concentrate on the cluster core. Cooling flows are found within the cores of a significant fraction of rich and poor clusters, as well as in relatively isolated elliptical galaxies.  相似文献   

11.
Magnetic fields appear to be ubiquitous in astrophysical environments. Their existence in the intracluster medium is established through observations of synchrotron emission and Faraday rotation. On the other hand, the nature of magnetic fields outside of clusters, where observations are scarce and controversial, remains largely unknown. In this chapter, we review recent developments in our understanding of the nature and origin of intergalactic magnetic fields, and in particular, intercluster fields. A plausible scenario for the origin of galactic and intergalactic magnetic fields is for seed fields, created in the early universe, to be amplified by turbulent flows induced during the formation of the large scale structure. We present several mechanisms for the generation of seed fields both before and after recombination. We then discuss the evolution and role of magnetic fields during the formation of the first starts. We describe the turbulent amplification of seed fields during the formation of large scale structure and the nature of the magnetic fields that arise. Finally, we discuss implications of intergalactic magnetic fields.  相似文献   

12.
This review is concerned with relativistic electron events observed in interplanetary space. The different types of event are identified and illustrated. The relationships between solar X-ray and radio emissions and relativistic electrons are examined, and the relevance of the observations to solar flare acceleration models is discussed. A statistical analysis of electron spectra, the electron/proton ratio and propagation from the flare site to the Earth is presented. A model is outlined which can account for the release of electrons from the Sun in a manner consistent with observations of energetic solar particles and electromagnetic solar radiation.The literature survey for this review was concluded in May 1973.  相似文献   

13.
Clusters of galaxies are self-gravitating systems of mass ∼1014–1015 h −1 M and size ∼1–3h −1 Mpc. Their mass budget consists of dark matter (∼80%, on average), hot diffuse intracluster plasma (≲20%) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties, like mass, galaxy velocity dispersion, X-ray luminosity and temperature, testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. Both the fraction of clusters with these features, and the correlation between the dynamical and morphological properties of irregular clusters and the surrounding large-scale structure increase with redshift. In the current bottom-up scenario for the formation of cosmic structure, where tiny fluctuations of the otherwise homogeneous primordial density field are amplified by gravity, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass, in agreement with most of the observational evidence. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ∼50% of this diffuse component has temperature ∼0.01–1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.  相似文献   

14.
It is argued that the high-energy X-ray and -ray emission from flaring blazars is beamed radiation from the relativistic jet supporting the relativistic beaming hypothesis and the unified scenario for AGNs. Most probably the high-energy emission results from inverse Compton scattering by relativistic electrons and positrons in the jet of radiation originating external to the jet plus pair annihilation radiation from the jet. Future positive TeV detections of EGRET AGN sources will be decisive to identify the prominent target photon radiation field. Direct -ray production by energetic hadrons is not important for the flaring phase in -ray blazars, but the acceleration of energetic hadrons during the quiescent phase of AGNs is decisive as the source of secondary electrons and positrons through photo-pair and photo-pion production. Injection of ultrahigh energy secondary electrons and positrons into a stochastic quasilinear acceleration scheme during the quiescent AGN phase leads to cooling electron-positron distribution functions with a strong cut-off at low but relativistic energy that under certain local conditions may trigger a plasma instability that gives rise to an explosive event and the flaring -ray phase.  相似文献   

15.
An excess over the extrapolation to the extreme ultraviolet and soft X-ray ranges of the thermal emission from the hot intracluster medium has been detected in a number of clusters of galaxies. We briefly present each of the satellites (EUVE, ROSAT PSPC and BeppoSAX, and presently XMM-Newton, Chandra and Suzaku) and their corresponding instrumental issues, which are responsible for the fact that this soft excess remains controversial in a number of cases. We then review the evidence for this soft X-ray excess and discuss the possible mechanisms (thermal and non-thermal) which could be responsible for this emission.  相似文献   

16.
We review some of the most important theoretical ideas and observations for quasars and the nuclei of active galaxies, and suggest areas of future research. Emphasis is on the nature of the power source, the radiation processes, and the mechanism for formation and collimation of jets. Phenomena that produce X-rays are of particular concern. Particular topics discussed are the observed and expected time variability, the gas supply mechanisms and luminosity evolution, thermal and nonthermal radiation processes, observed and theoretical spectra, criteria for thermalization of electrons and ions, effects of electron-positron pairs on relativistic plasmas, hydrodynamic, electrodynamic and inertial methods for producing and confining jets. We conclude with a list of needed observations.Based on a lecture given at the Goddard Workshop on X-ray Astronomy (October 1981).  相似文献   

17.
We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000?μG. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1?mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from ~5?μG to 1?mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a substantial density gradient across the remnant.  相似文献   

18.
Recent observations of the energetic particles produced in solar flares indicate that the production of electrons, with energies up to about 100 keV, is a fairly common feature of small flares. In those flares the acceleration of protons and other nuclei does not extend beyond about 1 MeV.The X-ray emission often exhibits two distinct components of which the first one is produced by non-thermal, the second by thermal electrons through bremsstrahlung collisions with the ambient ions. Along with these X rays, radio emission, in the microwave region, is observed. This radio emission is usually interpreted as due to gyrosynchrotron radiation from the same electrons.In this review a discussion is presented of the processes occurring in solar flares with special reference to the acceleration and radiation processes.  相似文献   

19.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   

20.
I review the observations of galactic synchrotron sources, focusing on shell supernova remnants (SNRs), with particular attention to attributes that constrain the properties of electron acceleration. Radio observations provide information on source fluxes, spectral index, morphology, and polarization. Recent observations give us strong reason to believe that several young SNRs show synchrotron X-ray emission. Even if X-rays are thermal, however, limits can be set on the maximum energy to which electrons can be accelerated without a spectral break, since no galactic SNR is observed to have X-ray emission (due to any source) as bright as the extrapolation from radio frequencies of radio synchrotron emission. If synchrotron X-rays are detected or inferred, their morphology and spectrum provide important information on mechanisms governing acceleration to the highest energies. I describe models of synchrotron emission from SNRs and their comparison with observations. Finally, I describe the tasks ahead for both observers and theoreticians, to make better use of what SNR synchrotron emission tells us about particle acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号