首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
发动机机动飞行类综合载荷谱研究   总被引:6,自引:3,他引:6  
按照疲劳、蠕变以及热冲击损伤等效的原则 ,保证实测飞行载荷谱和综合载荷谱主要循环数、各功率状态持续时间以及主要功率状态的变化顺序相同 ,推导了某发动机机动飞行类综合载荷谱 ,为编制该发动机的加速任务试车谱提供了依据。首先根据空测结果对机动飞行任务剖面进行分类和飞行任务段的识别 ,然后统计发动机功率或转速的雨流计数循环以及各载荷状态持续的时间 ,并分析次循环对发动机造成的损伤情况 ,以决定取舍。将各机动飞行任务的同类任务段和同类载荷循环乘以任务混频后进行加权平均即得到机动飞行类综合载荷谱。最后根据发动机的高度—速度特性计算出发动机的工作参数谱  相似文献   

2.
教练机发动机设计载荷谱推导方法   总被引:1,自引:3,他引:1  
宋迎东 《推进技术》1997,18(6):64-67
系统地研究了教练机航空发动机设计载荷谱的推导方法,主要包括:(1)基准机的选取与现役发动机载荷谱的空测、统计;(2)新机发动机飞行剖面的预测;(3)新机发动机设计任务循环的编制等三大步骤。提出的方法具有一定的通用性,可以推广到其它类型的发动机设计载荷谱研究。  相似文献   

3.
航空发动机飞行载荷谱的预测   总被引:2,自引:0,他引:2  
宋迎东 《航空动力学报》1997,12(1):89-91,111
提出了基于飞机的设计飞行任务剖面、飞行力学及发动机原理的发动机飞行载荷的预测方法,即首先将飞机的设计飞行任务剖面通过飞行力学的基本原理转化为发动机的推力(或油门)剖面,然后通过发动机性能计算获得发动机的其它工作状态参数,从而获得发动机的飞行载荷谱。   相似文献   

4.
对于长寿命发动机,传统的航空发动机耐久性试验方法存在经济性差、试验周期长的问题。鉴于此,提出一种适用于较高温度裕度的航空发动机整机耐久性试车方法,阐述了编制试车谱的具体流程,说明了使用任务载荷谱和预测任务载荷谱的差异,给出了编制试车谱所必须的任务剖面、任务混频、环境混频等的具体算法,列出了编制试车谱所必须考虑的各种要素,并利用Norris-Landzberg模型确定了航空发动机等效应力加速系数。  相似文献   

5.
某直升机主减速器传动系统的寿命与可靠性计算方法   总被引:2,自引:1,他引:1  
通过对直升机典型任务剖面原始载荷数据谱进行统计处理,经三维有限元分析将所编系统载荷谱转化为齿轮应力谱;结合Goodman公式及材料P-S-N曲线(给定存活率下的疲劳寿命曲线)算出该系统各齿轮在各级载荷下的疲劳寿命,利用统计软件Minitab对寿命数据进行分析,得出齿轮的接触疲劳寿命服从两参数威布尔分布,根据威布尔分布的...  相似文献   

6.
通过对航空发动机成品的振动环境进行试验测试获得其振动环境特征。并在此基础上,依据发动机寿命剖面和任务剖面,采用加权系数法,建立用于成品振动环境试验的载荷谱。  相似文献   

7.
王智  李淑文  刘文琦 《航空学报》1990,11(8):393-395
 <正> 1.引言 国内外大量的研究表明,编制飞机载荷谱应考虑载荷的大小,频数、顺序和分布这四方面的因素,只有在这四方面都摸拟了飞机实际飞行情况,才能保证载荷谱的真实性。 程序块谱只考虑了载荷的大小和频数,所以逐渐被飞-续-飞谱所取代,飞-飞谱是按一个飞行接一个飞行编制的载荷谱。由空测数据编制这种谱的常规方法是先对法向过载系数ny进行计数处理,得到某个任务段(或任务剖面)内ny的大小和频数,而后将计数结果在该任务段(或任务剖面)内离散,生成ny的随机序列。与此同时,给出其它各主要气动参数的概率分布,然后按概率的大小组合成几种典型的飞行状态,再由飞行状态计算出对应的载荷分布。最后以这几种载荷分布为基础,根据ny的大小进行线性折算,得到各级ny下的载荷和载荷分布。  相似文献   

8.
某型发动机承力机匣疲劳载荷谱研究   总被引:3,自引:0,他引:3  
以某型发动机承力机匣疲劳载荷谱编制为例,介绍了一种基于载荷剖面计算的航空发动机零部件疲劳载荷谱编制方法。为使编制出来的载荷谱易于应用,采用了一种压缩处理方法,以获得较少的等效循环矩阵。还分析了各个载荷矩阵之问的相位关系,得到了相应的相关矩阵。最终得到的承力机匣疲劳载荷谱为后续的强度与疲劳寿命分析及其试验谱的确定提供了依据。  相似文献   

9.
航空涡喷涡扇发动机多参数载荷谱编制方法研究   总被引:2,自引:0,他引:2  
张勇  蔚夺魁 《航空发动机》2004,30(1):6-9,13
从多参数载荷谱的角度对发动机气动载荷与机动载荷的匹配进行了研究 ,针对不同构件给出了不同的多参数载荷谱的处理办法。并以某发动机外场飞行参数数据为基础 ,对其进行了 2种载荷的匹配分析。其结果对于相同装机对象的发动机重要部件寿命考核试验载荷的确定具有重要的参考价值。该方法还可进一步应用于外场发动机的定寿、延寿  相似文献   

10.
对航空发动机设计任务循环预测的计算机程序组织结构和设计方法进行了研究。编写的程序包括飞行载荷谱的预测及飞行载荷谱的处理两大模块,该程序已应用于某型教练机发动机的设计载荷谱的预测研究,以及多种型号的发动机载荷谱的处理。  相似文献   

11.
教练机发动机加速任务试车谱的编制   总被引:2,自引:1,他引:1  
根据教练机发动机的飞行任务剖面,研究出2个航线类综合任务谱和2个机动飞行类综合任务谱。然后根据该发动机主要零部件的寿命分析结果,在等损伤的前提下对综合任务谱进行压缩处理,编制了其加速任务试车谱。   相似文献   

12.
发动机飞行任务剖面的主成份聚类法   总被引:2,自引:5,他引:2  
本文提出了利用主成份分析对航空发动机飞行任务剖面进行分类的方法 ,并对某战斗机发动机 1 8个飞行任务剖面进行了聚类分析。选取了飞行高度、飞行马赫数、发动机转速以及发动机重心法向过载等 4个参数作为分类的原始依据参数。对上述 4个参数进行主成份分析 ,得到 4个独立的主成份 ,其中第一、二主成份的累积贡献率可达 81 .1 %。因此 ,可以根据主平面内各飞行任务剖面的第一、二主成分的分布情况直观地进行定性地分类。最后 ,本文利用重心法进行了定量的聚类 ,得到了分类的树状图。研究结果表明本文提出的方法是合理可行的  相似文献   

13.
模糊数学在飞行试验数据处理中的应用   总被引:3,自引:0,他引:3  
程德金 《飞行力学》1994,12(2):52-59
介绍了模糊数学在数据处理中的两类典型应用,以模糊集合思想为基础,利用布尔代数特有的性质,经广义相似计算,建立了发动机飞行任务剖面样本的隶属函数模糊矩阵;并用平方法检验该矩阵是否满足模糊等价条件,在满足时选取不同阈值进行动态聚类,在此基础上确定发动机典型任务剖面,通过对飞行试验数据预处理以及外场调查,共取得118个架次过载系数最大值样本,最得各种模式概率密度函数和分布函数,并应用模糊数学模式识别方法  相似文献   

14.
教练机发动机使用任务循环推导   总被引:2,自引:0,他引:2  
宋迎东  尚传钧 《航空动力学报》1995,10(3):270-271,312
在大量的外场统计和空测的基础上, 对某教练机发动机的外场使用载荷进行了分析研究, 推导出了其使用任务循环, 并与MIL-STD-1783进行了对比分析, 为国产同类新型教练机发动机的设计任务循环的预测奠定了基础。   相似文献   

15.
发动机航线类综合载荷谱研究   总被引:6,自引:2,他引:4  
宋迎东  高德平 《推进技术》2000,21(4):54-56,72
在空测和外场使用统计的基础上,根据综合任务谱和实际的飞行任务谱对发动机造成的疲劳和蠕变以及热冲击损伤一致的原则,在推导过程中保证两种谱的载荷循环数相同、各功率状态持续的时间相同以及主要的功率状态的变化顺序相同,将某发动机5种航线类飞行任务和地面功能检查试车任务进行综合,得到航线类综合任务谱。然后根据发动机的高度-速度特性和飞行高度与速度计算出该发动机的航线类转速谱。综合任务谱和相应的转速谱的获得为  相似文献   

16.
航空发动机飞行任务剖面统计规律研究   总被引:5,自引:3,他引:2  
程礼  冯伟  陈卫 《航空动力学报》2003,18(6):749-752
采用某型教练机发动机的实测飞行数据,以飞行剖面转速循环中的主循环为当量疲劳损伤特征,进行了飞行任务剖面统计规律的研究,重点研究不同飞行员操作所造成的损伤差异。研究表明:由于飞行员驾驶水平的不同,相同飞行任务对发动机造成的低循环疲劳损伤呈正态分布,但不同飞行任务正态分布的统计参数是不同的,这种差异不会因为飞行员操作水平不同而显著改变。   相似文献   

17.
涡轮风扇发动机飞机性能换算方法研究   总被引:1,自引:0,他引:1  
利用因次分析的方法,推导出了涡轮风扇发动机的换算系数,由此得出了涡轮风扇发动机飞机性能换算的基本准则及换算参数,即涡轮风扇发动机飞机的运动相似条件,并给出了部分换算公式。以此为基础,可以将实际条件上得到的涡轮风扇发动机飞机的性能参数换算例到标准条件。经某型收音机的试飞证明,该换算方法正确,结果可靠,完全能够为收音机定型及性能比较提供依据。  相似文献   

18.
针对航空发动机飞行任务剖面分类问题,对发动机31个飞行任务剖面进行了聚类分析。选取飞行高度和飞行马赫数作为划分飞行任务剖面的参数, 依据其对应的飞行任务段均值生成聚类散点图,将剖面类型划分为5大类。结果表明:低空低速剖面在无量纲飞行高度为0~0.2、飞行马赫数为0.4~0.6区间,均值最低;高空高速剖面在无量纲飞行高度为1.2~2.2、飞行马赫数为1.0~1.8区间,均值最高;飞行任务剖面在无量纲飞行高度为0.2~1.2、飞行马赫数为0.6~1.0区间内最为集中;针对散点密集区域,可依据剖面特征进一步划分剖面类型;不同剖面间,飞行高度与飞行马赫数差异性强,利于剖面划分,而法向过载与转速差异性小,不利于剖面的划分。所提出的方法可以快速有效的对航空发动机飞行任务剖面进行聚类分析。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号