首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于相似理论的航空发动机风扇转速换算方法的改进   总被引:1,自引:1,他引:0  
基于相似理论提出一种通过变指数因子计算航空发动机风扇换算转速的改进方法.收集不同公司的某型航空发动机的巡航数据建立数据样本.采用支持向量回归机方法建立指数因子与大气温度的数学模型并利用遗传算法对模型参数进行寻优,进而得到由风扇指示转速和大气温度计算风扇换算转速的变指数因子模型.使用该模型对样本数据进行计算,并把结果与定指数因子方法求解的风扇换算转速进行对比,对改进算法与定指数法换算结果进行了误差分析.结果表明:改进后的变指数因子模型计算的航空发动机风扇换算转速具有更高的精度,同时具有良好的推广泛化性能,该方法是航空发动机风扇换算转速的一种有效算法,在航空发动机性能预测也具有实际的指导意义.   相似文献   

2.
孔迪 《航空发动机》2014,40(3):60-65
针对飞机在大攻角飞行时易引起进气道和发动机进口流场畸变的情况,对某型发动机的综合抗进气压力畸变能力进行了整机试验研究。试验采用插板式畸变模拟器研究发动机综合抗总压畸变能力,获得了各规定风扇换算转速下发动机临界畸变指数,完成了畸变条件下遭遇加速试验,发动机过渡态工作正常。结果表明:该试验方案可行、数据可靠、结果有效,该型发动机满足飞机/发动机相容性试验要求。  相似文献   

3.
针对单级跨声速风扇高切线速度、低压比的特点,采用先进的气动布局及特性分析方法,高切线速度低压比转子设计、低损失可调导叶设计、大攻角范围低损失静子设计技术,以及叶顶激波系控制技术等,完成了该单级风扇的设计,并在此基础上完成机械运转、总性能试验及导叶优化试验。试验结果表明,该单级风扇在满足发动机尺寸设计要求的前提下,各转速流量、效率、压比及稳定裕度均满足设计指标要求,其中效率和稳定裕度远远超过设计指标。  相似文献   

4.
为评定涡扇发动机装机推力损失,基于推力直接确定方法开展了发动机推力测量地面试验。通过改进完善安装节推力数据处理方法、进气道冲压阻力计算方法来提高总推力测量精度,分析表明:台架试验推力测量最大误差为2.41%,11架次飞行后停机状态发动机总推力测量误差小于0.8 kN,基本满足推力测量评定的需求。以相同状态台架试验数据为基准,对比发现:随着发动机功率状态增大,总推力损失呈明显增大趋势,中间状态换算总推力损失达到了17.95%,最大状态换算总推力损失达到了27.72%。通过分析风扇换算转速、换算流量等关键参数,得出:装机后受进气道的影响,导致换算流量明显小于同等状态下台架试验的换算流量,同时进气道内气流总压的过大损失,是造成装机后发动机推力损失明显的主要原因。  相似文献   

5.
根据某民用航空发动机大涵道比风扇1/2缩尺试验任务的需求,利用三维数值模拟软件对该风扇缩尺试验件各个转速下的内、外涵气动性能进行了数值仿真分析,并对缩尺几何、弹性恢复角及涵道比等参数对风扇缩尺试验件内、外涵气动性能的影响进行了对比分析.结果表明:该风扇缩尺试验件各转速下的内、外涵性能都基本达到设计指标;几何缩尺分别引起了风扇外涵、内涵设计点的效率分别降低了1.26%,0.77%;80%转速下,叶尖弹性恢复角减小0.36°使风扇外涵稳定工作裕度扩展了4.04%,但近设计点总压比和效率均有所衰减;双涵道风扇在不同涵道比状态下,内、外涵相互影响,流量-总压比及流量-绝热效率特性是在一定范围内的曲线带.   相似文献   

6.
陈俊  周驯黄  徐珺  刘常春  许尧 《推进技术》2019,40(7):1498-1504
为了探究航空发动机的风扇噪声,通过试验研究了缩尺风扇前传噪声在不同转速工况下的频谱特性和周向模态特性,并对所设计的环形声衬降噪效果进行了验证。研究结果表明,基于试验测量数据分析得到的频谱特性和周向模态特性满足转静干涉噪声理论。随着转速的提高,风扇纯音噪声越显著,高转速工况下纯音噪声的能量约占风扇前传噪声的85%。在所研究的工况范围内,该声衬对目标频率及模态均有显著的降噪效果,且在85%转速工况时的纯音降噪效果最优,其主模态的传声损失约为59dB。该声衬对于设计频率附近的宽频噪声也有一定降噪效果,在85%转速时的宽频噪声平均传递损失约为3dB。  相似文献   

7.
相似设计在某风扇改型设计中的应用   总被引:1,自引:0,他引:1  
针对某涡扇发动机推力增大的动力需求,在充分分析原型风扇性能和流场的基础上,对原型风扇进行了改型设计.改型设计的方法采用“轴流/离心压气机通用叶片造型设计系统”,依据相似理论,在保证第2级风扇进口的相似准则和原型一致,即保证改型与原型第2级风扇在进口的换算流量和换算转速相等的前提下,来增大第1级风扇的流量和压比.经过三维流场计算和分析,结果表明:在风扇转速提高到1.011的情况下,流量提高到1.071,压比提高到1.074,效率提高到1.029,裕度比原型提高了0.8%,达到了性能指标的要求,改型设计结果比较理想.总体对风扇的性能和整机匹配性分析和评估表明:该风扇改型设计方案能够满足该涡扇发动机推力增大的需求.   相似文献   

8.
周笑阳  张龙  薛秀生  王亮  程昊 《推进技术》2021,42(5):1154-1161
为研究风扇叶片叶尖扭转特性,基于叶尖定时技术,建立一种发动机运行状态动态测量叶片叶尖弹性变形角的试验方法,在压气机试车台对小涵道比双级风扇试验件一级转子叶片不同工况下叶尖扭转特性开展了试验研究。试验结果表明:叶尖弹性变形角表现为随着转速升高而变大及随着特性线向失稳区移动而变大的特点,在100%换算转速近喘点达到本次试验风扇稳定工作状态的最大值1.25°。可变进口导叶(VIGV)角度仅在喘振边界附近对叶尖弹性变形角影响较大。在90% 转速、VIGV角度为-5°喘点处,叶尖弹性变形角出现大幅振荡,经估算,1号叶片喘振前扭转振幅为0.18°,喘点处扭转振幅为1.05°,退喘后扭转振幅为0.11°,通过监测弹性变形角测量叶片振动具有可行性。  相似文献   

9.
基于可调斜板式进气道及涡扇发动机,研究了飞机高空超声速减速条件下,进气道斜板板位快速调零后涡扇发动机的喘振特征,及放大尾喷口临界截面面积和提高风扇转速的扩稳措施对发动机稳定性的影响。结果表明:进气道可调斜板快速调零引起的发动机进口压力波动,会导致进气道与发动机流量不匹配,进气畸变增大;较低风扇换算转速下,进气畸变等降稳因子会导致发动机稳定裕度不足;放大尾喷口临界截面面积,提高了发动机的稳定性,喘振概率大大降低;增加最小燃油流量,提高高空发动机慢车状态风扇转速,可避免发动机进入低转速易喘振区域。  相似文献   

10.
钛合金宽弦风扇叶片的振动特性   总被引:1,自引:2,他引:1  
通过模态仿真和模态试验技术分别对某型号TC4钛合金宽弦风扇叶片的振动特性进行研究。采用ANSYS-APDL软件对风扇叶片模型进行模态仿真分析。根据风扇叶片的坎贝尔图以及不同模态的振型分布,识别风扇叶片的弯扭振型。风扇叶片不同转速不同模态下的转速裕度和频率裕度分析显示:第1阶弯曲模态在红线转速下的转速裕度和频率裕度超过20%,表明风扇叶片满足共振裕度要求。在三轴向振动台上利用扫描式激光测振仪,采用敲击法和随机带宽激励的方法测量叶片的响应,分析了风扇叶片不同模态的冲击响应特性和多轴响应特性,发现风扇叶片在周向和轴向激励下的响应以低阶弯曲模态为主,而在径向激励下的响应以扭转和复合模态为主,不同激励位置不同模态的响应特性与风扇叶片的振型息息相关。   相似文献   

11.
发动机滑油散热系统性能计算方法及其应用   总被引:2,自引:1,他引:1  
讨论了安装鼓风机引起滑油附加温升的原因并提出了合理的计算模型,完善了滑油散热系统性能计算方法。研究表明,在建立良好的物理模型的基础上,应用遗传算法对模型结构参数进行优化,可以显著提高系统模型的精度,减小系统性能计算误差。应用本文的计算模型分析了温控活门对滑油温度的影响,并建立了预测燃、滑油瞬态温度值的方法,为发动机的安全运行提供了指导。本文方法的优点是只需少量滑油系统试验数据即可获得满意的模型拟合结果,从而大大节约了试验费用,提高了试验效率,并能有效预测试验难以达到的恶劣条件下的滑油散热性能。   相似文献   

12.
航空发动机风扇叶片与机匣刮蹭分析及结构设计   总被引:1,自引:1,他引:0  
针对异常载荷下,航空发动机宽弦风扇叶片的叶尖与机匣刮蹭变形及损伤特征缺乏数据支持,而传统理论计算方法存在较大的误差问题,建立了宽弦风扇叶片叶尖刮蹭显式动力学分析模型,采用宽弦风扇叶片与机匣刮蹭试验数据,对分析模型的计算精度进行了验证。基于分析模型进行了仿真参数的敏感度分析,得到了叶片与机匣刮蹭后叶片变形及机匣损伤规律。研究结果表明:叶尖伸长量对转子转速非常敏感,叶尖径向伸长量增加速率远大于转速增加值,因此在叶片设计中应考虑到风扇叶片极限转速下叶尖伸长量。同时需要选取合理的扭转角度以满足叶片安全性和气动性能的要求。在风扇机匣包容区设计中应主动考虑异常载荷的影响,增大安全性设计域度;设计合理的耐磨层材料参数,减小风扇叶片对其冲击损伤。采用该方法可以提高叶尖间隙控制精度,减小刮蹭对叶片和机匣造成的损伤。   相似文献   

13.
为研究倾转涵道动力装置在倾转过渡阶段的非定常气动力,使用基于滑移网格技术的非定常计算方法,利用基于内场信息和叶素理论的压力盘模型模拟风扇螺旋桨,通过求解Navier-Stokes(N-S)方程,对涵道风扇俯仰拉起过程进行数值模拟.结果表明:在倾转过程中涵道风扇非定常气动力的迟滞特性明显,俯仰角速度延迟了流场分离,增加了涵道风扇的升力和阻力;低速飞行时,涵道风扇在整个倾转过渡阶段气动性能优良;在高速大迎角飞行时,涵道风扇气动性能恶化,俯仰力矩曲线紊乱,不利于进行倾转过渡飞行.   相似文献   

14.
轴流风扇/压气机气动性能试验若干问题探讨   总被引:3,自引:1,他引:2  
为提高航空发动机风扇/压气机试验流程控制的合理性和试验结果评定的真实性,在梳理国内航空发动机压缩部件气动性能试验研究现状的基础上,总结提炼出若干重要技术问题,并通过理论分析和部分试验验证,对所涉及的技术问题进行了深入探讨.分析结果表明:风扇气动性能试验和压气机气动性能试验对试验设备排气能力的要求不同;相比升转速录取方式,降转速录取能够优化风扇/压气机的试验流程;可采取不同措施降低测量探针对风扇/压气机试验结果的固有影响;可调导叶/静叶安装角度定位与全行程调节精度是影响变几何多级压气机气动性能试验结果重复性的主要因素.   相似文献   

15.
全三维、多叶排内外涵风扇压气机叶型优化研究   总被引:3,自引:2,他引:1  
以某风扇/压气机为研究对象,采用全三维叶型优化方法对研究对象在整机条件下进行优化设计.对优化前后风扇/压气机进行全三维数值模拟并对计算结果进行对比分析研究,结果表明:优化后在不改变风扇级总压比的情况下设计点附近效率提高1.05%;在近设计点叶型改进后明显改善了风扇和外涵静子主流道的流场结构,根、尖两个截面流场显示采用新叶型后对内、外涵静子通道内流动均有不同程度的改善.   相似文献   

16.
风扇/增压级内外涵联算的特性数值模拟   总被引:5,自引:4,他引:1  
提出了一种风扇/增压级内外涵联算的多转速全工况快速特性预测的计算方法.该方法将模化的叶片法向力和摩擦力引入周向平均形式的Euler方程组源项,结合NASA SP-36提供的攻角和落后角确定方法以及Koch稳定边界模型,对高负荷跨声风扇级以及某双涵道大涵道比的风扇/增压级进行了特性数值模拟,并与实验和三维数值模拟结果进行了比较.结果显示周向平均方法基本满足风扇/增压级初期气动设计快速特性预估的工程精度要求.   相似文献   

17.
跨声速风扇叶片的静态气动弹性问题   总被引:3,自引:0,他引:3  
郑赟  王彪  杨慧 《航空动力学报》2013,28(11):2475-2482
使用时域的流固耦合数值计算方法,研究了跨声速风扇叶片在气动力和离心力共同作用下的静态气动弹性问题,分析了叶片在不同工况下的变形规律及叶片变形对整体气动性能的影响.NASA rotor 67的静态气动弹性计算说明气动力对叶片最大变形的贡献达13.07%, 而且叶片变形明显地改变了通道激波的位置和强度.宽弦空心跨声速风扇叶片的静态气动弹性计算说明叶片变形对总体气动效率的影响为0.15%~ 0.5%,其中气动力对变形贡献在叶片尖部的前缘可达41%,考虑气动力引起的变形使得该风扇的流量增大,气动特性线整体向右偏移.计算结果说明:气动力的非线性对跨声速风扇叶片静态变形问题有显著的影响,工程实践中从设计叶型到制造叶型的反扭过程应该采用流固耦合方法以得到更准确的叶型.   相似文献   

18.
声学引导风洞高效低噪声风扇设计   总被引:3,自引:0,他引:3  
运用任意涡风扇设计方法,进行声学引导风洞高效低噪声风扇设计。在设计过程中,通过调整叶片径向旋转系数分布优化叶片出口速度分布,通过合理匹配转子、定子数目及定子后掠角度来改善动静叶的干涉噪声。气动及声学性能试验表明,高效低噪声风扇设计点气动效率达到83.9%,相比引导风洞原风扇效率的73%有了明显的提高;高效低噪声风扇入口及出口噪声分别比原风扇入口及出口噪声低3dB(A)和2dB(A)。试验结果成功验证了任意涡设计方法在风扇气动及声学性能上的优越性。  相似文献   

19.
针对某高负荷双级风扇非设计转速裕度不足的问题,通过NUMECA三维(CFD)数值模拟软件,对比分析了可变弯度导叶(VIGV)前后可偏转调节对导叶气动性能的影响,以及导叶大角度范围内变弯度调节对提高风扇中低转速性能的作用。结果表明:可变弯度导叶偏转调节后的叶型实际弯角是影响导叶气动损失的重要因素之一;通过导叶前段适当变角度调节能减小导叶的实际弯角,推迟了导叶吸力面气流分离的出现,拓宽了变弯度导叶低损失可调角度范围;同时导叶适当的前后偏转调节能够降低导叶对缝隙位置的敏感性;此外前后可调变弯度导叶能够使高负荷风扇非设计工况实现更高的绝热效率,在90%转速、80%转速、70%转速和60%转速下的风扇绝热效率分别提高了2.04%、5.48%、6.18%和6.82%;且由于风扇喘振边界进一步远离风扇阀门线,使得风扇中低转速的稳定工作范围显著拓展。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号