首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
3.
4.
5.
Nan CAO  Xiang LUO  Zeyu WU  Jie WEN 《中国航空学报》2018,31(11):2057-2072
This paper presents an experimental investigation on the effect of protrusion radial position and height on the sealing performance and flow structure in the rotor-stator cavity. The rotor-mounted protrusions are assembled at three radial positions and are set to three heights. The cavity is equipped with three rim seals: a radial seal, an axial seal and a seal with double fins on the stator. The annulus Reynolds number is set at 4.39×105 and the rotational Reynolds number ranges from 7.51×105 to 1.20×106. Heat and mass transfer analogy is applied. Pressure and CO2 concentration are measured. The experimental results show that in cavities with different rim seals, radial distributions of the sealing efficiency, pressure and swirl ratio are basically the same. The sealing performance is improved by protrusions compared with the cavity without protrusion and improves with the increase of protrusion radial position and height. The effect of protrusion increases with the increase of the rotational Reynolds number. The windage loss and the flow resistance introduced by protrusions are investigated. It is found that induced windage loss and flow resistance decrease with the increase of protrusion radial position but increase with the protrusion height.  相似文献   

6.
7.
《中国航空学报》2021,34(1):397-409
Fault diagnosis of rotating machinery has always drawn wide attention. In this paper, Intrinsic Component Filtering (ICF), which achieves population sparsity and lifetime consistency using two constraints: l1/2 norm of column features and l3/2 -norm of row features, is proposed for the machinery fault diagnosis. ICF can be used as a feature learning algorithm, and the learned features can be fed into the classification to achieve the automatic fault classification. ICF can also be used as a filter training method to extract and separate weak fault components from the noise signals without any prior experience. Simulated and experimental signals of bearing fault are used to validate the performance of ICF. The results confirm that ICF performs superior in three fault diagnosis fields including intelligent fault diagnosis, weak signature detection and compound fault separation.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
《中国航空学报》2021,34(4):1-18
The previous studies of time delay compensation in flight control systems are all based on the conventional aerodynamic derivative model and conducted in longitudinal motions at low angles of attack. In this investigation, the effects of time delay on the lateral-directional stability augmentation system in high-α regime are discussed based on the β̇ model, which is proposed in our previous work and proved as a more accurate aerodynamic model to reveal the lateral-directional unsteady aerodynamic characteristics at high angles of attack. Both the β̇ model and the quasi-steady model are used for simulating the effects of time delay on the flying qualities in high-α maneuvers. The comparison between the simulation results shows that the flying qualities are much more sensitive to the mismatch of feedback gains than the state errors caused by time delay. Then a typical adaptive controller based on the conventional dynamic derivative model and a gain-prediction compensator based on β̇ model are designed to address the time delay in different maneuvers. The simulation results show that the gain-prediction compensator is much simpler and more efficient at high angles of attack. Finally, the gain-prediction compensator is combined with a linearized β̇ model reference adaptive controller to compensate the adverse effects of very large time delay, which exhibits excellent performance when addressing the extreme conditions at high angles of attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号