首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper a model is presented for the geochemical evolution of Mars which is constrained by the isotope systematics of Pb, Nd, and Sr determined for SNC meteorites (SNCs). The young magmatic crystallization ages (internal or mineral ages) of SNCs may indicate that these meteorites indeed stem from Mars. Internal ages and U-Pb and Pb-Pb systematics strongly suggest that they are the result of two magmatic processes. In addition, shock metamorphism is implied from observed petrographic shock features. For ALHA 77009 a shock-age < 15 Ma is obtained which is within uncertainty identical to the independently determined cosmic ray exposure age. It is therefore plausible that shock and exposure ages are identical for all SNCs. The Rb/Sr data of all common (non-SNC) meteorites form a 4.55 Ga isochron as do the Pb-Pb data (geochron). The SNC data fall close to these two isochrons. The Sr and Pb isotopic compositions in SNCs suggest that they formed in a recent (1.3-0.15 Ga) melting event from reservoirs which had been magmatically differentiated 4.3 ± 0.2 Ga ago. In a concordia diagram (U-Pb evolution plot) the SNC data reflect recent increase of the U/Pb ratio and the same two stage magmatic history as suggested by the other isotopic systems. The oxygen isotopic composition as well as the Nd isotopic systematics strongly suggest that the SNCs stem from one common reservoir which chemically differentiated 4.3 ± 0.2 Ga ago and then formed sub-reservoirs. In contrast to common meteorites, SNCs experienced an early magmatic differentiation where the Sm/Nd, U/Pb and Rb/Sr ratios have been strongly fractionated. In the recent magmatic process (1.3-0.15 Ga ago), in which the SNCs were formed as rocks, Sm/Nd and U/Pb were fractionated, while Rb/Sr remained similar to that of the source from which the magmas originated. During these melting events, mixing of components from different sub-reservoirs might have had occurred. At least three subreservoirs are necessary to explain the isotopic variations observed in SNCs. In contrast to the isotopic evolution of the Earth, Mars conserved remnants of the primary differentiation, a fact, which places important constraints on the tectonic evolution of Mars.  相似文献   

2.
Information about the composition of volatiles in the Martian atmosphere and interior derives from Viking spacecraft and ground-based measurements, and especially from measurements of volatiles trapped in Martian meteorites, which contain several distinct components. One volatile component, found in impact glass in some shergottites, gives the most precise measurement to date of the composition of Martian atmospheric Ar, Kr, and Xe, and also contains significant amounts of atmospheric nitrogen showing elevated 15N/14N. Compared to Viking analyses, the 36Ar/132Xe and 84Kr/132Xe elemental ratios are larger in shergottites, the 129Xe/132Xe ratio is similar, and the 40Ar/36Ar and 36Ar/38Ar ratios are smaller. The isotopic composition of atmospheric Kr is very similar to solar Kr, whereas the isotopes of atmospheric Xe have been strongly mass fractionated in favor of heavier isotopes. The nakhlites and ALH84001 contain an atmospheric component elementally fractionated relative to the recent atmospheric component observed in shergottites. Several Martian meteorites also contain one or more Martian interior components that do not show the mass fractionation observed in atmospheric noble gases and nitrogen. The D/H ratio in the atmosphere is strongly mass fractionated, but meteorites contain a distinct Martian interior hydrogen component. The isotopic composition of Martian atmospheric carbon and oxygen have not been precisely measured, but these elements in meteorites appear to show much less variation in isotopic composition, presumably in part because of buffering of the atmospheric component by larger condensed reservoirs. However, differences in the oxygen isotopic composition between meteorite silicate minerals (on the one hand) and water and carbonates indicate a lack of recycling of these volatiles through the interior. Many models have been presented to explain the observed isotopic fractionation in Martian atmospheric N, H, and noble gases in terms of partial loss of the planetary atmosphere, either very early in Martian history, or over extended geological time. The number of variables in these models is large, and we cannot be certain of their detailed applicability. Evolutionary data based on the radiogenic isotopes (i.e., 40Ar/36Ar, 129Xe/132Xe, and 136Xe/132Xe ratios) are potentially important, but meteorite data do not yet permit their use in detailed chronologies. The sources of Mars' original volatiles are not well defined. Some Martian components require a solar-like isotopic composition, whereas volatiles other than the noble gases (C, N, and H2O) may have been largely contributed by a carbonaceous (or cometary) veneer late in planet formation. Also, carbonaceous material may have been the source of moderate amounts of water early in Martian history.  相似文献   

3.
Using the Mass Time-of-Flight Spectrometer (MTOF)—part of the Charge, Elements, Isotope Analysis System (CELIAS)—onboard the Solar Heliospheric Observatory (SOHO) spacecraft, we derive the nickel isotopic composition for the isotopes with mass 58, 60 and 62 in the solar wind. In addition we measure the elemental abundance ratio of nickel to iron. We use data accumulated during ten years of SOHO operation to get sufficiently high counting statistics and compare periods of different solar wind velocities. We compare our values with the meteoritic ratios, which are believed to be a reliable reference for the solar system and also for the solar outer convective zone, since neither element is volatile and no isotopic fractionation is expected in meteorites. Meteoritic isotopic abundances agree with the terrestrial values and can thus be considered to be a reliable reference for the solar isotopic composition. The measurements show that the solar wind elemental Ni/Fe-ratio and the isotopic composition of solar wind nickel are consistent with the meteoritic values. This supports the concept that low-FIP elements are fed without relative fractionation into the solar wind. Our result also confirms the absence of substantial isotopic fractionation processes for medium and heavy ions acting in the solar wind.  相似文献   

4.
Lunar soil and certain meteorites contain noble gases trapped from the solar wind at various times in the past. The progress in the last decade to decipher these precious archives of solar history is reviewed. The samples appear to contain two solar noble gas components with different isotopic composition. The solar wind component resides very close to grain surfaces and its isotopic composition is identical to that of present-day solar wind. Experimental evidence seems by now overwhelming that somewhat deeper inside the grains there exists a second, isotopically heavier component. To explain the origin of this component remains a challenge, because it is much too abundant to be readily reconciled with the known present day flux of solar particles with energies above those of the solar wind. The isotopic composition of solar wind noble gases may have changed slightly over the past few Ga, but such a change is not firmly established. The upper limit of ~5% per Ga for a secular increase of the 3He/4He ratio sets stringent limits on the amount of He that may have been brought from the solar interior to the surface (cf. Bochsler, 1992). Relative abundances of He, Ne, and Ar in present-day solar wind are the same as the long term average recorded in metallic Fe grains in meteorites within error limits of some 15-20%. Xe, and to a lesser extent Kr, are enriched in the solar wind similar to elements with a first ionisation potential < 10 eV, although Kr and Xe have higher FIPs. This can be explained if the ionisation time governs the FIP effect (Geiss and Bochsler, 1986). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed \(\leq 4\) Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter’s orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn’s orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.  相似文献   

6.
Ott  Ulrich 《Space Science Reviews》2003,106(1-4):33-48
Elements usually considered volatile are key constituents (C, N, O) of the pre-solar grains identified in primitive meteorites and/or key diagnostic elements (noble gases). Their isotopic compositions generally are unlike anything seen in matter of solar-system origin. The large variations are indicative of the various stellar sources and various processes of nucleosynthesis by which they were created. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Galimov  E.M. 《Space Science Reviews》2003,106(1-4):249-262
Contrary to the often stated view, an enrichment of organic material in the light isotope is not a conclusive evidence of its life-related origin. The β13C - σ13C correlation is a special feature of biological systems. Therefore it can be used as a criterion for identification of organic carbon. A survey of the available isotopic data for organic compounds in meteorites shows that they do not comply with the β13C - σ13C correlation. The prevalence of amino and hydroxy acids in purines and sugars found in carbonaceous meteorites indicates that condensation of HCN and HCHO passed through cyanohydrin reaction, while biological evolution proceeds through formation of adenosine triphosphate (ATP). This, in addition to the isotope criterion, indicates that the organic compounds in carbonaceous chondrites are not life-related substances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Meteorites contain extraterrestrial carbonaceous materials. The Alais, Orgueil, Tonk, and Ivuna meteorites resemble in their carbon, free sulfur, and non-metamorphosed mineral contents, densities, and general appearances certain organic-rich terrestrial sediments. Structural and isotopic determinations of carbon compounds in the Orgueil chondrite indicate that these compounds are primarily indigenous. Physically and chemically the benzene extractable carbonaceous materials from the Orgueil and certain near-surface terrestrial sediments are similar. Mass spectrometric type analyses of the alkanes from an Orgueil fragment, terrestrial sediments and organisms are statistically indistinguishable at the 95 per cent confidence level. Theoretical considerations and experimental data are presented, and these permit an assessment of the potential and reliability of hydrocarbons as biological indicators. Based on the production and preservation or organic substances in terrestrial environments, alkanes in the Alais, Orgueil, Tonk, and Ivuna (Type I) carbonaceous chondrites could retain the best evidence of organisms that may have lived on a parent body of meteorites.A portion of the research reported in this article was supported by the National Aeronautics and Space Administration under Contract No. NASw 508.  相似文献   

9.
Howardite-eucrite-diogenite (HED) meteorites, thought to be derived from 4 Vesta, provide the best sampling available for any differentiated asteroid. However, deviations in oxygen isotopic composition from a common mass-fractionation line suggest that a few eucrite-like meteorites are from other bodies, or that Vesta was not completely homogenized during differentiation. The petrology and geochemistry of HEDs provide insights into igneous processes that produced a crust composed of basalts, gabbros, and ultramafic cumulate rocks. Although most HED magmas were fractionated, it is unresolved whether some eucrites may have been primary melts. The geochemistry of HEDs indicates that bulk Vesta is depleted in volatile elements and is relatively reduced, but has chondritic refractory element abundances. The compositions of HEDs may favor a magma ocean model, but inconsistencies remain. Geochronology indicates that Vesta accreted and differentiated within the first several million years of solar system history, that magmatism continued over a span of ??10 Myr, and that its thermal history extended for perhaps 100 Myr. The protracted cooling history is probably responsible for thermal metamorphism of most HEDs. Impact chronology indicates that Vesta experienced many significant collisions, including during the late heavy bombardment. The age of the huge south pole crater is controversial, but it probably ejected Vestoids and many HEDs. Continued impacts produced a regolith composed of eucrite and diogenite fragments containing only minor exotic materials. HED meteorites serve as ground truth for orbital spectroscopic and chemical analyses by the Dawn spacecraft, and their properties are critical for instrument calibration and interpretation of Vesta??s geologic history.  相似文献   

10.
A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a m spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refrectory trace elements in IDPs, and C, N, Mg, and Si isotopes in interstellar silicon carbide grains, and C and N isotopes as well as H, N, Al and Si concentrations in interstellar graphite grams. Possible future instrumental developments are also outlined.  相似文献   

11.
The measured D/H ratios in interstellar environments and in the solar system are reviewed. The two extreme D/H ratios in solar system water - (720±120)×10−6 in clay minerals and (88±11)×10−6 in chondrules, both from LL3 chondritic meteorites - are interpreted as the result of a progressive isotopic exchange in the solar nebula between deuterium-rich interstellar water and protosolar H2. According to a turbulent model describing the evolution of the nebula (Drouart et al., 1999), water in the solar system cannot be a product of thermal (neutral) reactions occurring in the solar nebula. Taking 720×10−6 as a face value for the isotopic composition of the interstellar water that predates the formation of the solar nebula, numerical simulations show that the water D/H ratio decreases via an isotopic exchange with H2. During the course of this process, a D/H gradient was established in the nebula. This gradient was smoothed with time and the isotopic homogenization of the solar nebula was completed in 106 years, reaching a D/H ratio of 88×10−6. In this model, cometary water should have also suffered a partial isotopic re-equilibration with H2. The isotopic heterogeneity observed in chondrites result from the turbulent mixing of grains, condensed at different epochs and locations in the solar nebula. Recent isotopic determinations of water ice in cold interstellar clouds are in agreement with these chondritic data and their interpretation (Texeira et al., 1999). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Small amounts of pre-solar “stardust” grains have survived in the matrices of primitive meteorites and interplanetary dust particles. These grains—formed directly in the outflows of or from the ejecta of stars—include thermally and chemically refractory carbon materials such as diamond, graphite and silicon carbide; as well as refractory oxides and nitrides. Pre-solar silicates, which have only recently been identified, are the most abundant type except for possibly diamond. The detailed study with modern analytical tools, of isotopic signatures in particular, provides highly accurate and detailed information with regard to stellar nucleosynthesis and grain formation in stellar atmospheres. Important stellar sources are Red Giant (RG) and Asymptotic Giant Branch (AGB) stars, with supernova contributions apparently small. The survival of those grains puts constraints on conditions they were exposed to in the interstellar medium and in the early solar system.  相似文献   

13.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   

14.
Primitive meteorites and interplanetary dust particles contain small quantities of dust grains with highly anomalous isotopic compositions. These grains formed in the winds of evolved stars and in the ejecta of stellar explosions, i.e., they represent a sample of circumstellar grains that can be analyzed with high precision in the laboratory. Such studies have provided a wealth of information on stellar evolution and nucleosynthesis, Galactic chemical evolution, grain growth in stellar environments, interstellar chemistry, and the inventory of stars that contributed dust to the Solar System. Among the identified circumstellar grains in primitive solar system matter are diamond, graphite, silicon carbide, silicon nitride, oxides, and silicates. Circumstellar grains have also been found in cometary matter. To date the available information on circumstellar grains in comets is limited, but extended studies of matter returned by the Stardust mission may help to overcome the existing gaps.  相似文献   

15.
The discovery in the early sixties of precompaction solar wind irradiation records in the gas-rich meteorites opened up the possibility of studying the solar activity at different epochs in the distant past. Subsequent studies in several meteorites have led to the discovery of the precompaction records of irradiation of constituent grains by solar wind, solar flare and galactic cosmic ray particles. There are also microcraters resulting from their collisions with interplanetary dust grains. Analyses of these records and their observed similarity with those found in the lunar samples led to the hypothesis that the precompaction records in individual components of these meteorites were imprinted while they were residing in the near surface region of their parent bodies, most probably the asteroids. Although the asteroids are the most plausible candidates for the parent bodies of gas-rich meteorites, there exist certain dynamical arguments which tend to favor a cometary origin in certain cases. Also, recent studies indicate that in the case of gas-rich carbonaceous chondrites solar flare irradiation of grains may have occurred prior to formation of the parent bodies.In this review we summarize the significant advances that have taken place in the multi-disciplinary studies (petrography, chemistry, and radiation effects) of the gas-rich meteorites and critically evaluate the present state of our knowledge regarding the origin and evolution of the gas-rich meteorites. The information on the spatial and temporal variations in the interplanetary radiation and particle fluxes, obtained from the analysis of precompaction irradiation records in these meteorites is presented and further studies in certain specific topics are suggested for resolving some of the unsolved problems.  相似文献   

16.
We review recent progress in understanding how nebular dust and gas are converted into the planets of the present-day solar system, focusing particularly on the “Grand Tack” and pebble accretion scenarios. The Grand Tack can explain the observed division of the solar system into two different isotopic “flavours”, which are found in both differentiated and undifferentiated meteorites. The isotopic chronology inferred for the development of these two “flavours” is consistent with expectations of gas-giant growth and nebular gas loss timescales. The Grand Tack naturally makes a small Mars and a depleted, dynamically-excited and compositionally mixed asteroid belt (as observed); it builds both Mars and the Earth rapidly, which is consistent with the isotopically-inferred growth timescale of the former, but not the latter. Pebble accretion can explain the rapid required growth of Jupiter and Saturn, and the number of Kuiper Belt binaries, but requires specific assumptions to explain the relatively protracted growth timescale of Earth. Pure pebble accretion cannot explain the mixing observed in the asteroid belt, the fast proto-Earth spin rate, or the tilt of Uranus. No current observation requires pebble accretion to have operated in the inner solar system, but the thermal and compositional consequences of pebble accretion have yet to be explored in detail.  相似文献   

17.
Nitrogen isotopes have played an important part in the acceptance of the hypothesis that SNC meteorites derive from Mars. As a result, these meteorites can be investigated for their carbon, sulphur, and hydrogen systematics with a view to learning something about the environmental conditions on the planet. Important aspects of the role of carbon, present in the form of carbon dioxide as an atmospheric gas and leading to the formation of carbonates by weathering or hydrothermal activity, can be established. The presence of indigenous organics is an intriguing possibility. A variety of new or emerging techniques which could improve our understanding of SNC meteorites and might be applied to a returned Martian sample are discussed.  相似文献   

18.
Origin,age, and composition of meteorites   总被引:1,自引:0,他引:1  
This paper attempts to bring together and evaluate all significant evidence on the origin of meteorites.The iron meteorites seem to have formed at low pressures. Laboratory evidence shows that the absence of a Widmanstätten pattern in meteorites with > 16% Ni cannot be attributed to high pressures, but to supercooling or an unusually fast cooling rate for these meteorites, which prevented the development of a pattern. The presence of tridymite in the Steinbach siderophyre provides further, direct proof that the Widmanstätten pattern can form at pressures less than 3 kb. Neither diamond, nor cliftonite, nor cohenite are reliable pressure indicators in meteorites. Diamonds were formed by shock while cliftonite may have been derived from a cubic carbide such as Fe4C. Cohenite is apparently stabilized by kinetic rather than thermodynamic factors. Several lines of evidence suggest that the irons come from more than one parent body, perhaps as many as four.The frequency of pallasites is perfectly consistent with an origin in the transition zone between core and mantle of the parent body. Hybrid meteorites such as Brenham are not necessarily derived from the metal-silicate interface, but probably resulted from dendrite growth in the solidifying melt.Ordinary chondrites definitely are equilibrium assemblages rather than chance conglomerates. According to the best available evidence, Prior's rules seem to be valid. The metal particles in chondrites differentiated into kamacite and taenite in their present location, rather than in a remote earlier environment. Trace element abundances in ordinary and carbonaceous chondrites suggest that these meteorites accreted from two types of matter: an undepleted fraction that separated from its complement of gases at low temperatures, and a depleted fraction that lost its gases at high temperatures. These two fractions of primitive meteoritic matter are tentatively identified with the matrix and chondrules-plus-metal, respectively. New restrictive limits are placed on the iron-silicate fractionation in chondrites. No direct evolutionary path exists that connects the currently accepted solar abundances of Fe and Ni and the observed Fe/Si and Ni/Si ratios in chondrites. Apparently the solar abundance of iron is in error. The iron-silicate fractionation seems to have occurred while chondritic matter was in a more strongly reduced state than its present one.The U-He and K-Ar ages of hypersthene chondrites are systematically shorter than those of bronzite chondrites. Short ages are correlated with shock effects, and it seems that the hypersthene chondrites suffered reheating and partial-to-complete outgassing 0.4 AE ago. The cosmic-ray exposure ages of all classes of meteorites cluster distinctly, indicating that the meteorites were produced in a few discrete major collisions rather than by a quasi-continuum of smaller ones. The dates of the principal breakups are: irons, 0.6 and 0.9 AE; aubrites, 45 m.y.; bronzite chondrites, 4 m.y.; hypersthene chondrites, 0.025, 3, 7–13, and 16–31 m.y. All four clusters of hypersthene chondrites show evidence of severe outgassing 0.4 AE ago, which implies that most or all hypersthene chondrites come from the same parent body.As already noted by Signer and Suess, two distinct types of primordial gas occur in meteorites. Differentiated meteorites always contain unfractionated gas, while relatively undifferentiated meteorites contain fractionated gas. The former component is invariably associated with shock effects, and seems to have been derived from the solar wind. The latter component is correlated with other volatiles and seems to be a truly primitive constituent of meteoritic matter. Isotopic anomalies in the fractionated gas suggest that meteoritic matter was irradiated with 1017 protons/cm2 at a very early stage of its history.There is very little doubt that most, if not all, meteorites come from the asteroid belt rather than from the moon. The orbits and geocentric velocities of stony meteorites resemble those of the Apollo asteroids (most of which are former members of the asteroid belt that have strayed into terrestrial space), but disagree strongly with the calculated orbits and velocities for lunar ejecta. Öpik's conclusions about the difficulty of accelerating lunar debris to escape velocity represent a further argument against a lunar origin of stony meteorites.The most likely parent bodies of the meteorites are the 34 asteroids which cross the orbit of Mars. Collisional debris from these objects will remain in Mars-crossing orbits, and perturbations by Mars will inject some fraction of this material into terrestrial space. Most of the Mars asteroids, comprising 98% of the mass and 92% of the cross-section, belong to three Hirayama families (Phocaea, Desiderata, and Aethra), and an additional, previously unrecognized family. These families were apparently produced by disruption of parent asteroids ca. 104, 105, and 46 km in diameter. The size distribution and light curves of asteroids indicate that the larger asteroids are original accretions, rather than collision fragments. There is no reason to believe that the meteorites ever resided in bodies larger than Ceres (d = 770 km).Various theories on the origin of the meteorites are critically reviewed in the light of the preceding evidence. Wood's theory, which postulates a high-temperature and a low-temperature variety of primordial matter, is in best accord with the evidence. Apparently the asteroids accreted from varying proportions of these two types of material, and were then heated by extinct radioactivity produced in the early irradiation.  相似文献   

19.
A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.  相似文献   

20.
Present natural data bases for abundances of the isotopic compositions of noble gases, carbon and nitrogen inventories can be found in the Sun, the solar wind, meteorites and the planetary atmospheres and crustal reservoirs. Mass distributions in the various volatile reservoirs provide boundary conditions which must be satisfied in modelling the history of the present atmospheres. Such boundary conditions are constraints posed by comparison of isotopic ratios in primordial volatile sources with the isotopic pattern which was found on the planets and their satellites. Observations from space missions and Earth-based spectroscopic telescope observations of Venus, Mars and Saturn's major satellite Titan show that the atmospheric evolution of these planetary bodies to their present states was affected by processes capable of fractionating their elements and isotopes. The isotope ratios of D/H in the atmospheres of Venus and Mars indicate evidence for their planetary water inventories. Venus' H2O content may have been at least 0.3% of a terrestrial ocean. Analysis of the D/H ratio on Mars imply that a global H2O ocean with a depth of ≤ 30 m was lost since the end of hydrodynamic escape. Calculations of the time evolution of the 15N/14N isotope anomalies in the atmospheres of Mars and Titan show that the Martian atmosphere was at least ≥ 20 times denser than at present and that the mass of Titan's early atmosphere was about 30 times greater than its present value. A detailed study of gravitational fractionation of isotopes in planetary atmospheres furthermore indicates a much higher solar wind mass flux of the early Sun during the first half billion years. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号