首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Lunar Radar Sounder (LRS) onboard the KAGUYA (SELENE) spacecraft has successfully performed radar sounder observations of the lunar subsurface structures and passive observations of natural radio and plasma waves from the lunar orbit. After the transfer of the spacecraft into the final lunar orbit and antenna deployment, the operation of LRS started on October 29, 2007. Through the operation until June 10, 2009, 2363 hours worth of radar sounder data and 8961 hours worth of natural radio and plasma wave data have been obtained. It was revealed through radar sounder observations that there are distinct reflectors at a depth of several hundred meters in the nearside maria, which are inferred to be buried regolith layers covered by a basalt layer with a thickness of several hundred meters. Radar sounder data were obtained not only in the nearside maria but also in other regions such as the farside highland region and polar region. LRS also performed passive observations of natural plasma waves associated with interaction processes between the solar wind plasma and the moon, and the natural waves from the Earth, the sun, and Jupiter. Natural radio waves such as auroral kilometric radiation (AKR) with interference patterns caused by the lunar surface reflections, and Jovian hectometric (HOM) emissions were detected. Intense electrostatic plasma waves around 20 kHz were almost always observed at local electron plasma frequency in the solar wind, and the electron density profile, including the lunar wake boundary, was derived along the spacecraft trajectory. Broadband noises below several kHz were frequently observed in the dayside and wake boundary of the moon and it was found that a portion of them consist of bipolar pulses. The datasets obtained by LRS will make contributions for studies on the lunar geology and physical processes of natural radio and plasma wave generation and propagation.  相似文献   

3.
A survey, using results from the first 25 orbits of ISEE-1, has been made of some aspects of electrons in the dawn magnetosheath. There are indications that the flow of plasma is not uniformly turbulent over this region. The electron heat flux is observed to be directed away from the shock and to have an average value of about twice the interplanetary heat flux. Many magnetopause crossings were observed and usually resemble abrupt transitions from one well-defined plasma state to another. The ejection of plasma from flux tubes converted up against the magnetopause is observed for about half the time, and its thickness and dependence on the solar wind mach number agree with theoretical predictions. A full traversal of the whole forward hemisphere of the magnetosheath is required to fully confirm these deductions.  相似文献   

4.
Spherical double probes for measurements of electric fields on the GEOS-1, GEOS-2, and ISEE-1 satellites are described. An essential feature of these satellites is their conductive surfaces which eliminate errors due to differential charging and enable meaningful diagnostic experiments to be carried out. The result of these experiments is a good understanding of interactions between the plasma, the satellite and the probes, including photo-electron emission on satellite and probes. Electric field measurements are compared with measurements of plasma drift perpendicular to the magnetic field in the solar wind and the magnetosphere and the error bar for the absolute values of the electric field is found to be in the range ±(0.5–1.0) mV m-1 whereas relative variations can be determined with much better accuracy. A useful by-product from a spherical double probe system is the determination of satellite floating potential which is related to the plasma electron flux. This measurement allows high time resolution studies of boundary crossings. Examples of electric field measurements, which reflect the recent scientific results, are given for different regions of the magnetosphere from the bow shock, the inner magnetosphere and the tail. Several examples of simultaneous GEOS-ISEE observations are described.  相似文献   

5.
Energetic (0.1-16 keV/e) ion data from a plasma composition experiment on the ISEE-1 spacecraft show that Earth's plasma sheet (inside of 23 RE) always has a large population of H+ and He++ ions, the two principal ionic components of the solar wind. This population is the largest, in terms of both number density and spatial thickness, during extended periods of northward interplanetary magnetic field (IMF) and is then also the most "solar wind-like" in the sense that the He++/H+ density ratio is at its peak (about 3% on average in 1978 and 79) and the H+ and He++ have mean (thermal) energies that are in the ratio of about 1:4 and barely exceed the typical bulk flow energy in the solar wind. During geomagnetically active times, associated with southward turnings of the IMF, the H+ and He++ are heated in the central plasma sheet, and reduced in density. Even when the IMF is southward, these ions can be found with lower solar wind-like energies closer to the tail lobes, at least during plasma sheet thinning in the early phase of substorms, when they are often seen to flow tailward, approximately along the magnetic field, at a slow to moderate speed (of order 100 km s-1 or less). These tailward flows, combined with the large density and generally solar wind-like energies of plasma sheet H+ and He++ ions during times of northward IMF, are interpreted to mean that the solar wind enters along the tail flanks, in a region between the lobes and the central plasma sheet, propelled inward by ExB drift associated with the electric fringe field of the low latitude magnetopause boundary layer (LLBL). In order to complete this scenario, it is argued that the rapid (of order 1000 km s-1) earthward ion flows (mostly H+ ions), also along the magnetic field, that are more typically the precursors of plasma sheet "recovery" during substorm expansion, are not proof of solar wind entry in the distant tail, but may instead be a time-of-flight effect associated with plasma sheet redistribution in a dipolarizing magnetic field.  相似文献   

6.
The EGD plasma experiment, launched on board of the ISEE-2 spacecraft, is briefly described. Preliminary results concerning three bow shock crossings occurred in November 1977 are discussed. Our attention is focused on some non-thermal features of the distribution function of proton velocities: in particular, we discuss double peaked structures of solar wind spectra and flows of particles backstreaming from the bow shock.  相似文献   

7.
The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2–80 cm-3. This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wave analysis function of the instrument is provided by FFT calculation. Compared with the swept frequency wave analysis of previous sounders, this technique has several new capabilities. In particular, when used for natural wave measurements (which cover here the 2–80 kHz range), it offers a flexible trade-off between time and frequency resolutions. In the basic nominal operational mode, the density is measured every 28 s, the frequency and time resolution for the wave measurements are about 600 Hz and 2.2 s, respectively. Better resolutions can be obtained, especially when the spacecraft telemetry is in burst mode. Special attention has been paid to the coordination of WHISPER operations with the wave instruments, as well as with the low-energy particle counters. When operated from the multi-spacecraft Cluster, the WHISPER instrument is expected to contribute in particular to the study of plasma waves in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere.  相似文献   

8.
In this paper we present an initial survey of results from the plasma wave experiments on the ISEE-1 and -2 spacecraft which are in nearly identical orbits passing through the Earth's magnetosphere at radial distances out to about 22.5R e . Essentially every crossing of the Earth's bow shock can be associated with an intense burst of electrostatic and whistler-mode turbulence at the shock, with substantial wave intensities in both the upstream and downstream regions. Usually the electric and magnetic field spectrum at the shock are quite similar for both spacecraft, although small differences in the detailed structure are sometimes apparent upstream and downstream of the shock, probably due to changes in the motion of the shock or propagation effects. Upstream of the shock emissions are often observed at both the fundamental, f - p , and second harmonic, 2f p - , of the electron plasma frequency. In the magnetosphere high resolution spectrograms of the electric field show an extremely complex distribution of plasma and radio emissions, with numerous resonance and cutoff effects. Electron density profiles can be obtained from emissions near the local electron plasma frequency. Comparisons of high resolution spectrograms of whistler-mode emissions such as chorus detected by the two spacecraft usually show a good overall similarity but marked differences in detailed structure on time scales less than one minute. Other types of locally generated waves, such as the (n+1/2)f - g electron cyclotron waves, show a better correspondence between the two spacecraft. High resolution spectrograms of kilometric radio emissions are also presented which show an extremely complex frequency-time structure with many closely spaced narrow-band emissions.  相似文献   

9.
We examine the magnetic field in the martian magnetosheath due to solar wind draping. Mars Global Surveyor provided 3-D vector magnetic field measurements at a large range of altitudes, local times, and solar zenith angles as the spacecraft orbit evolved. We choose orbits with very clean signatures of draping to establish the nominal morphology of the magnetic field lines at local times of near-subsolar and near-terminator. Next, using a compilation of data from Mars Global Surveyor, we determine the average magnetic field morphology in the martian magnetosheath due to the solar wind interaction. The topology of the field is as expected from previous observations and predictions. The magnetic field magnitude peaks at low altitude and noon magnetic local time and decreases away from that point. The magnetic field has an inclination from the local horizontal of 5.6° on average in the dayside magnetosheath and 12.5° on the nightside. The inclination angle is closest to zero at noon magnetic local time and low altitude. It increases both upward and to later local times. The magnetic field in the induced magnetotail flares out from the Mars—Sun direction by 21°. Finally, we compare the observations to gasdynamic model predictions and find that the shocked solar wind flow in the martian magnetosheath can be treated as a gasdynamic flow with the magnetic pileup boundary as the inner boundary to the flow.  相似文献   

10.
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased.  相似文献   

11.
Green  J.L.  Reinisch  B.W. 《Space Science Reviews》2003,109(1-4):183-210
The Radio Plasma Imager (RPI) on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft was designed as a long-range magnetospheric radio sounder, relaxation sounder, and a passive plasma wave instrument. The RPI is a highly flexible instrument that can be programmed to perform these types of measurements at times when IMAGE is located in key regions of the magnetosphere. RPI is the first radio sounder ever flown to large radial distances into the magnetosphere. The long-range sounder echoes from RPI allow remote sensing of a variety of plasmas structures and boundaries in the magnetosphere. A profile inversion technique for RPI echo traces has been developed and provides a method for determining the density distribution of the plasma from either direct or field-aligned echoes. This technique has enabled the determination of the evolving density structure of the polar cap and the plasmasphere under a variety of geomagnetic conditions. New results from RPI show that the plasmasphere refills in slightly greater than a day at L values of 2.8 and that ion heating is probably playing a major role in the overall density distribution along the field-line. In addition, RPI's plasma resonance observations at large radial distances over the polar cap provided in situ measurements of the plasma density with an accuracy of a few percent. For the first time in the magnetosphere, RPI has also observed the plasma D resonances. RPI's long antennas and its very low noise receivers provide excellent observations in the passive receive-only mode when the instrument measures the thermal plasma noise as well as natural emissions such as the continuum radiation and auroral kilometric radiation (AKR). Recent passive measurements from RPI have been compared extensively with images from the Extreme Ultraviolet (EUV) imager on IMAGE resulting in a number of new discoveries. For instance, these combined observations show that kilometric continuum can be generated at the plasmapause from sources in or very near the magnetic equator, within a bite-out region of the plasmasphere. The process by which plasmaspheric bite-out structures are produced is not completely understood at this time. Finally, RPI has been used to successfully test the feasibility of magnetospheric tomography. During perigee passages of the Wind spacecraft, RPI radio transmissions at one and two frequencies have been observed by the Waves instrument. The received electric field vector was observed to rotate with time due to the changing density of plasma, and thus Faraday rotation was measured. Many future multi-spacecraft missions propose to use Faraday rotation to obtain global density pictures of the magnetosphere.  相似文献   

12.
Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α?2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.  相似文献   

13.
The double probe, floating potential instrumentation on ISEE-1 is producing reliable direct measurements of the ambient DC electric field at the bow shock, at the magnetopause, and throughout the magnetosheath, tail plasma sheet and plasmasphere. In the solar wind and in middle latitude regions of the magnetosphere spacecraft sheath fields obscure the ambient field under low plasma flux conditions such that valid measurements are confined to periods of moderately intense flux. Initial results show: (a) that the DC electric field is enhanced by roughly a factor of two in a narrow region at the front, increasing B, edge of the bow shock, (b) that scale lengths for large changes in E at the sub-solar magnetopause are considerably shorter than scale lengths associated with the magnetic structure of the magnetopause, and (c) that the transverse distribution of B-aligned E-fields between the outer magnetosphere and ionospheric levels must be highly complex to account for the random turbulent appearance of the magnetospheric fields and the lack of corresponding time-space variations at ionospheric levels. Spike-like, non-oscillatory, fields lasting <0.2 s are occasionally seen at the bow shock and at the magnetopause and also intermittently appear in magnetosheath and plasma sheet regions under highly variable field conditions. These suggest the existence of field phenomena occurring over dimensions comparable to the probe separation and c/pe (the characteristic electron cyclotron radius) where pe is the electron plasma frequency.  相似文献   

14.
The Martian ionosphere has for the first time been probed by a low frequency topside radio wave sounder experiment (MARSIS) (Gurnett et al., 2005). The density profiles in the Martian ionosphere have for the first time been observed for solar zenith angles less than 48 degrees. The sounder spectrograms typically have a single trace of echoes, which are controlled by reflections from the ionosphere in the direction of nadir. With the local density at the spacecraft derived from the sounder measurements and using the lamination technique the spectrograms are inverted to electron density profiles. The measurements yield electron density profiles from the sub-solar region to past the terminator. The maximum density varies in time with the solar rotation period, indicating control of the densities by solar ionizing radiation. Electron density increases associated with solar flares were observed. The maximum electron density varies with solar zenith angle as predicted by theory. The altitude profile of electron densities between the maximum density and about 170m altitude is well approximated by a classic Chapman layer. The neutral scale height is close to 10 to 13 km. At altitudes above 180 km the densities deviate from and are larger than inferred by the Chapman layer. At altitudes above the exobase the density decrease was approximated by an exponential function with scale heights between 24 and 65 km. The densities in the top side ionosphere above the exobase tends to be larger than the densities extrapolated from the Chapman layer fitted to the measurements at lower altitudes, implying more efficient upward diffusion above the collision dominated photo equilibrium region.  相似文献   

15.
16.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

17.
SWEA, the solar wind electron analyzers that are part of the IMPACT in situ investigation for the STEREO mission, are described. They are identical on each of the two spacecraft. Both are designed to provide detailed measurements of interplanetary electron distribution functions in the energy range 1~3000 eV and in a 120°×360° solid angle sector. This energy range covers the core or thermal solar wind plasma electrons, and the suprathermal halo electrons including the field-aligned heat flux or strahl used to diagnose the interplanetary magnetic field topology. The potential of each analyzer will be varied in order to maintain their energy resolution for spacecraft potentials comparable to the solar wind thermal electron energies. Calibrations have been performed that show the performance of the devices are in good agreement with calculations and will allow precise diagnostics of all of the interplanetary electron populations at the two STEREO spacecraft locations.  相似文献   

18.
The Cassini radio and plasma wave investigation is designed to study radio emissions, plasma waves, thermal plasma, and dust in the vicinity of Saturn. Three nearly orthogonal electric field antennas are used to detect electric fields over a frequency range from 1 Hz to 16 MHz, and three orthogonal search coil magnetic antennas are used to detect magnetic fields over a frequency range from 1 Hz to 12 kHz. A Langmuir probe is used to measure the electron density and temperature. Signals from the electric and magnetic antennas are processed by five receiver systems: a high frequency receiver that covers the frequency range from 3.5 kHz to 16 MHz, a medium frequency receiver that covers the frequency range from 24 Hz to 12 kHz, a low frequency receiver that covers the frequency range from 1 Hz to 26 Hz, a five-channel waveform receiver that covers the frequency range from 1 Hz to 2.5 kHz in two bands, 1 Hz to 26 Hz and 3 Hz to 2.5 kHz, and a wideband receiver that has two frequency bands, 60 Hz to 10.5 kHz and 800 Hz to 75 kHz. In addition, a sounder transmitter can be used to stimulate plasma resonances over a frequency range from 3.6 kHz to 115.2 kHz. Fluxes of micron-sized dust particles can be counted and approximate masses of the dust particles can be determined using the same techniques as Voyager. Compared to Voyagers 1 and 2, which are the only spacecraft that have made radio and plasma wave measurements in the vicinity of Saturn, the Cassini radio and plasma wave instrument has several new capabilities. These include (1) greatly improved sensitivity and dynamic range, (2) the ability to perform direction-finding measurements of remotely generated radio emissions and wave normal measurements of plasma waves, (3) both active and passive measurements of plasma resonances in order to give precise measurements of the local electron density, and (4) Langmuir probe measurements of the local electron density and temperature. With these new capabilities, it will be possible to perform a broad range of studies of radio emissions, wave-particle interactions, thermal plasmas and dust in the vicinity of Saturn.DeceasedThis revised version was published online in July 2005 with a corrected cover date.  相似文献   

19.
The relaxation sounder uses the characteristics of the propagation of radiowaves to sound the plasma surrounding the spacecraft. It determines, in particular, the plasma frequency, which gives the electron density.We have now measurements over the whole dayside of the magnetosphere, from the evening to the night sectors.The behaviour of the plasma resonance depends on local time, the nightime echoes being generally weaker.Density measurements thus obtained are shown and discussed in the context of what is presently known about the plasma distribution in the magnetosphere. In particular, the density around apogee is studied as a function of magnetic activity. On the dayside, it appears to vary between a few and a few tens of electrons per cubic centimeter. The evolution of the density profile for several consecutive days is studied and interpreted tracing back the drift of the particles.  相似文献   

20.
Using magnetometer and electron observations from the Mars Global Surveyor (MGS) and the Wind spacecraft we show that the region of magnetic field pile-up and density decrease located between the Martian ionosphere and bow shock exhibit strong similarities with the plasma depletion layer (PDL) observed upstream of the Earth's magnetopause in the absence of magnetic reconnection when the magnetopause is a solid obstacle in the solar wind. A PDL is formed upstream of the terrestrial magnetopause when the magnetic field piles up against the obstacle and particles in the pile-up region are squeezed away from the high magnetic pressure region along the field lines as the flux tubes convect toward the magnetopause. We here discuss the possibility that at least part of the region of magnetic field pile-up and density depletion upstream of Mars may be formed by the same physical processes which generate the PDL upstream of the Earth's magnetopause. More complete ion, electron, and neutral measurements are needed to conclusively determine the relative importance of the plasma depletion process versus exospheric processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号