首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
The fundamental properties of 24 Galactic WN stars are determined from analyses of their optical, UV and IR spectra using sophisticated model atmosphere codes (Hillier, 1987, 1990). Terminal velocities, stellar luminosities, temperatures, mass loss rates and abundances of hydrogen, helium, carbon, nitrogen and oxygen are determined. Stellar parameters are derived using diagnostic lines and interstellar reddenings found from fitting theoretical continua to observed energy distributions.Our results confirm that the parameters of WN stars span a large range in temperature (T*=30–90,000 K), luminosity (log L*/L=4.8–5.9), mass loss (M=0.9–12×10–5 M yr–1) and terminal velocity (v =630–3300 km s–1). Hydrogen abundances are determined, and found to be low in WNEw and WNEs stars (<15% by mass) and considerable in most WNL stars (1–50%). Metal abundances are also determined with the nitrogen content found to lie in the range N/He=1–5×10–3 (by number) for all subtypes, and C/N 0.02 in broad agreement with the predictions of Maeder (1991). Enhanced O/N and O/C is found for HD 104994 (WN3p) suggesting a peculiar evolutionary history. Our results suggest that single WNL+abs stars may represent an evolutionary stage immediately after the Of phase. Since some WNE stars exist with non-negligible hydrogen contents (e.g. WR136) evolution may proceed directly from WNL+abs to WNE in some cases, circumventing the luminous blue variable (LBV) or red supergiant (RSG) stage.  相似文献   

2.
This review summarises recent studies of O-stars, Luminous Blue Variables (LBVs) and Wolf-Rayet (WR) stars, emphasising observations and analyses of their atmospheres and stellar winds yielding determinations of their physical and chemical properties. Studies of these stellar groups provide important tests of both stellar wind theory and stellar evolution models incorporating mass-loss effects. Quantitative analyses of O-star spectra reveal enhanced helium abundances in Of and many luminous O-supergiants, together with CNO anomalies in OBN and Ofpe/WN9 stars, indicative of evolved objects. Enhanced helium, and CNO-cycle products are observed in several LBVs, implying a highly evolved status, whilst for the WR stars there is strong evidence for the exposition of CNO-cycle products in WN stars, and helium-burning products in WC and WO stars. The observed wind properties and mass-loss rates derived for O-stars show, in general terms, good agreement with predictions from the latest radiation-driven wind models, although some discrepancies are apparent. Several LBVs show similar mass-loss rates at maximum and minimum states, contrary to previous expectations, with the mechanism responsible for the variability and outbursts remaining unclear. WR stars exhibit the most extreme levels of mass-loss and stellar wind momenta. Whilst alternative mass-loss mechanisms have been proposed, recent calculations indicate that radiation pressure alone may be sufficient, given the strong ionization stratification present in their winds.  相似文献   

3.
Stratified Non-LTE models for expanding atmospheres became available in the recent years. They are based on the idealizing assumptions of spherical symmetry, stationarity and radiative equilibrium. From a critical discussion we conclude that this standard model is basically adequate for describing real Wolf-Rayet atmospheres and hence can be applied for quantitative spectral analyses of their spectra.By means of these models, the fundamental parameters have been determined meanwhile for the majority of the known Galactic WR stars. Most of them populate a vertical strip in the Herzsprung-Russell diagram at effective temperatures of 35 kK, the luminosities ranging from 104.5 to 105.9 L . Only early-type WN stars with strong lines and WC stars are hotter. The chemical composition of WR atmospheres corresponds to nuclear-processed material (WN: hydrogen burning in the CNO cycle; WC: helium burning). Hydrogen is depleted but still detectable in the cooler part of the WN subclass.Different scenarios for the evolutionary formation of the Wolf-Rayet stars are discussed in the light of the empirical data provided from the spectral analyses. Post-red-supergiant evolution can principally explain the basic observational properties, except the rather low luminosities of a considerable fraction of WN stars. Among the alternative scenarios, close-binary evolution can theoretically produce the least-luminous WN stars. However, final conclusions about the evolutionary formation of the WR stars are not yet possible.  相似文献   

4.
Palla  F.  Galli  D.  Bachiller  R.  Pérez Gutiérrez  M. 《Space Science Reviews》1998,84(1-2):177-183
We present the results of a study aimed at determining the 12C/13C ratio in two samples of planetary nebulae (PNe) by means of mm-wave observations of 12CO and 13CO. The first group includes six PNe which have been observed in the 3He+ hyperfine transition; the other group consists of 23 nebulae with rich molecular envelopes. We have determined the isotopic ratio in 14 objects and the results indicate a range of values between 9 and 23. In particular, three PNe have ratios well below the value predicted by standard evolutionary models ( 20), indicating that some extra-mixing process has occurred in these stars. We briefly discuss the implications of our results for standard and nonstandard stellar nucleosynthesis.  相似文献   

5.
Evolutionary models allow an assignment of both a mass and a luminosity to a Wolf-Rayet (WR) star in a cluster, and hence allow a determination of the Bolometric Correction (B.C.). The B.C.'s derived for WN stars range from –4.0 to –6.0 with the expected trend of larger values (in absolute values) for stars with higher excitation spectra. For WC stars, there is little evidence for a similar trend; most observations presented here are consistent with B.C.=–4.5, as found by Smith and Maeder (1989). The convergence of B.C. values derived from evolutionary and atmospheric models is extremely satisfactory, giving increased confidence in both methods.  相似文献   

6.
Summary Soft X-ray (0.3–3.5 keV) observations with the Imaging Proportional Counter (IPC) onboard Einstein Observatory are presented for a sample of some 20 cool stars of luminosity classes III–V. The results are compared with the Ca II H and K emission, which had served as a selection criterion.The specific X-ray flux FX is an increasing function of the specific Ca II H and K line-core flux FH+K. This correlation can be considerably improved by replacing FH+K by the excess flux (FH+K) above a certain lower limit which varies with B-V. This relation holds with little scatter over the two decades in FX in our sample. The FX-FH+K relation shows no significant dependence on spectral type or luminosity class, it suits close binaries as well as single stars. However, the coronal X-ray temperature Tc strongly depends on the luminosity class: Tc 3 106 K for dwarfs and 107 K for giants.The results are interpreted in the framework of magnetic activity. The X-ray emission and the excess Ca II H and K flux are attributed to magnetic structure in the corona and chromosphere, the magnetic features emerging from the stellar convective envelope, where they are generated by dynamo action.  相似文献   

7.
A large fraction of ISO observing time was used to study the late stages of stellar evolution. Many molecular and solid state features, including crystalline silicates and the rotational lines of water vapour, were detected for the first time in the spectra of (post-)Asymptotic Giant Branch (AGB) stars. Their analysis has greatly improved our knowledge of stellar atmospheres and circumstellar environments. A surprising number of objects, particularly young planetary nebulae with Wolf-Rayet (WR) central stars, were found to exhibit emission features in their ISO spectra that are characteristic of both oxygen-rich and carbon-rich dust species, while far-IR observations of the PDR around NGC 7027 led to the first detections of the rotational line spectra of CH and CH+. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

8.
Empirical mass-loss rates were derived for 28 luminous O stars from radio fluxes and H equivalent widths. Comparison with theoretical values predicted by the theory of radiatively driven winds reveals a discrepancy of 0.30±0.05 dex, with the theoretical values being too low. We show that there is not only a mass-loss discrepancy but also a momentum flux discrepancy. The theoretically predicted momentum fluxes are too low by 0.17±0.04 dex. This discrepancy is independent of the adopted stellar mass. We demonstrate that the momentum discrepancy in the most luminous O stars is comparable to the one found in the least extreme Wolf-Rayet stars. We suggest that the physical reason for the break-down of the theory in Wolf-Rayet stars and the most luminous O stars may be related.  相似文献   

9.
There is now strong observational evidence that the composition of the Galactic Cosmic Rays (GCRs) exhibits some significant deviations with respect to the abundances measured in the local (solar neighbourhood) interstellar medium (ISM). Two main scenarios have been proposed in order to account for these differences (`anomalies). The first one, referred to as the `two-component scenario, invokes two distinct components to be accelerated to GCR energies by supernova blast waves. One of these components is just made of ISM material of `normal solar composition, while the other one emerges from the wind of massive mass-losing stars of the Wolf–Rayet (WR) type. The second model, referred to as the `metallicity-gradient scenario, envisions the acceleration of ISM material whose bulk composition is different from the local one as a result of the fact that it originates from inner regions of the Galaxy, where the metallicity has not the local value. In both scenarios, massive stars, particularly of the WR type, play an important role in shaping the GCR composition. After briefly reviewing some basic observations and predictions concerning WR stars (including s-process yields), this paper revisits the two proposed scenarios in the light of recent non-rotating or rotating WR models.  相似文献   

10.
Let us suppose that it is possible observationally to determine the number ratio of WR to O stars in a starburst galaxy (cf. e. g. Vacca &; Conti 1992) and that one can also have some information on the way the different WR subtypes are distributed (number ratios as WN/WR, WNL/WR etc ...), the question is, what can we deduce from these values on the burst of star formation which gave birth to these WR stars? Is it possible for instance to constrain the age of the burst (i.e. the time elapsed since the beginning of the burst of star formation), its intensity (i.e. the ratio of the star formation rate during the burst to that before the burst) or the metallicity of the cloud from which the stars formed? We present here models of starbursts based on the most recent models for single stars computed by the Geneva group and show that the study of the WR population in a starburst provides very useful insights on the age of the burst and on the metallicity of the star forming zone.  相似文献   

11.
The Be stars     
Classical Be stars are defined and their relationship to normal B-type stars stated. Spectral classification of the underlying stars suggests that, on the average, Be stars are located 0.5–1.0 magnitude above the main sequence. Struve's rotational model for Be stars, and several tests which support the model, are reviewed. The best evidence at this time suggests that Be stars may not rotate with the critical velocity at which centrifugal force just balances the equatorial gravitational force, but a number of mechanisms for getting material out into the shell have been proposed and are discussed.The physical characteristics of Be shells were first derived from optical observations of shell stars, supplemented more recently by ultraviolet, infrared, radio, and polarization measurements. These data suggest that Be shells are probably lenticular with radii 3 to 20 times the radius of the underlying star, excitation temperatures lower than those of the reversing layers, and electron densities in the range 1010-1013 cm-3.Variability of Be stars, from spectroscopic, photometric, and polarimetric observations, seems well established over time scales of years and months, but the evidence for night-to-night and hourly changes is somewhat conflicting. Of special interest are recent X-ray observations of several Be stars.Models for the envelopes of Be stars are reviewed, including state-state stellar wind models, time-dependent stellar wind models, the elliptical ring model, disk models, and binary models. Finally, the evolutionary status of Be stars is discussed, and some recommendations for future work made.  相似文献   

12.
New ultraviolet (1300 A, 3400 A),HST FOC observations have been used to derive the UV color-magnitude diagram (CMD) of R136, with the main scientific goal of studying the upper end of the stellar mass function at ultraviolet wavelengths where the color degeneracy encountered in visual CMDs is less severe. The CMD has been compared to a set of theoretical isochrones, which have been computed using the latest generation of evolutionary models and model atmospheres for early type stars. Wolf-Rayet stars are included. Comparison of theTheoretical andobserved CMD suggests that there are no stars brighter than M130–11. We use the observed main sequence turn-off and the known spectroscopic properties of the stellar population to derive constraints on the most probable age of R136. The presence of WNL stars and the lack of red supergiants suggests a most likely age of 3±1 Myr. A theoretical isochrone of 3±1 Myr is consistent with the observed stellar content of R136 if the most massive stars have initial masses around 50 M.Bases on Observations with the NASA/ESA Hubble Space Telescope, obtained at the STScI, which is operated by AURA, Inc., under NASA contract NAS5-26555.Astrophysics Division, Space Science Department, ESA  相似文献   

13.
We review the possible evolutionary paths from massive stars to explosive endpoints as various types of supernovae associated with Population I and hence with massive stars: Type II-P, Type II-L, Type Ib, Type Ic, and the hybrid events SN 1987K and SN 1993J. We identify SN 1954A as another hybrid event from the evidence for both H and He in its spectrum with velocities nearly the same as SN 1983J. Evidence for ejected56Ni mass of 0.07 M suggests that SN II-P underwent standard iron core collapse, not collapse of an O–Ne–Mg core nor thermonuclear explosion of a C–O core. Most SN II-P presumably arise in single stars or wide binaries of 10–20 M. There may be indirect evidence for duplicity in some cases in the form of strong Ba II lines, such as characterized SN 1987A. SN II-L are recognizably distinct from typical SN II-P and must undergo a significantly different evolution. Despite indications that SN II-L have small envelopes that may be helium enriched, they are also distinct from events like SN 1993J that must have yet again a different evolution. The SN II-L that share a common Luminosity seem to have ejected a small nickel mass and hence may come from stars with O–Ne–Mg cores. The amount of nickel ejected by the exceptionally bright events, SN 1980K and SN 1979C, remains controversial. SN Ib require the complete loss of the H envelope, either to a binary companion or to a wind. The few identified have relatively large ejecta masses. It is not clear what evolutionary processes distinguish SN Ib's evolving in binary systems from hybrid events that retain some H in the envelope. SN Ic events are both H and He deficient. Binary models that can account for transfer of an extended helium envelope from low mass helium cores, 2 to 4 M, imply C–O core masses that are roughly consistent with that deduced from the ejecta mass plus a neutron star, 2 to 3 M. It is possible that the hybrid events are the result of Roche lobe overflow and that the pure events, SN Ib or SN Ic, result from common envelope evolution.  相似文献   

14.
Cooling of neutron stars is calculated using an exact stellar evolution code. The full general relativistic version of the stellar structure equations are solved, with the best physical input currently available. For neutron stars with a stiff equation of state, we find that the deviation from the isothermality in the interior is significant and that it takes at least a few thousand years to reach the isothermal state. By comparing the most recent theoretical and observational results, we conclude that for Cas A, SN1006, and probably Tycho, standard cooling is inconsistent with the results from the Einstein Observatory, if neutron stars are assumed to be present in these objects. On the other hand, the detection points for RCW103 and the Crab are consistent with these theoretical results.On leave from Department of Physics, Ibaraki University, Japan  相似文献   

15.
We discuss the origin, evolution and fate of low-mass Algols (LMA) that have components with initial masses less than 2.5 M0. The semi-major axes of orbits of pre-LMA do not exceed 20–25 R0. The rate of formation of Algol-type stars is 0.01/year. Magnetic stellar winds may be the factor that determines the evolution of LMA. Most LMA end their lives as double helium degenerate dwarfs with M1/M2 0.88 (like L870-2). Some of them even merge through angular momentum loss caused by gravitational waves.  相似文献   

16.
VX-Sagittarii is a red supergiant with a superwind which is observed in several maser lines. They provide an evidence that the outflow velocity keeps growing considerably at large distance from the star. It is argued that this phenomenon can be explained by stellar evolutionary effects.As a rule, the outflow velocity for late type stars correlates with the mass loss rate and from that it is suggested that the mass loss rate was higher in the past and is decreasing now. The mass of VX Sagittarii can be estimated on this basis and is about 40–50M   相似文献   

17.
The feasibility of observation of EUV sources is assessed. Many stars have been detected in the EUV range ( 100–1000); line fluxes from others can be predicted. Selected astrophysical problems are reviewed that can benefit from EUV spectroscopy. Included among them are the physics and dynamics of stellar coronae, confirmation of nuclear surface burning on cataclysmic variables, evolutionary properties of white dwarfs, the helium abundance in the interstellar medium, and spectroscopic signatures of neutrino oscillations.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

18.
The Harvard-Smithsonian Center for Astrophysics and the High Altitude Observatory have defined a joint coronagraphs experiment for a future Spacelab mission. The instrumentation package would include an ultraviolet light coronagraph to measure the intensity and profiles of spectral lines formed between 1.2 and 8 solar radii from Sun center and a white light coronagraph to measure the intensity and polarization of visible light. The overall goals of the joint program are to use new coronal plasma diagnostic techniques to understand the physical processes and mechanisms operating in the solar corona, to understand the acceleration of high-speed and low-speed solar wind streams and to extrapolate this knowledge to other stars in order to help understand the physics of stellar coronae and stellar mass loss.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

19.
We firstly examine the critical model assumptions for massive stars, in particular regarding mixing, mass loss and metallicity. The comparisons of models and observations for main sequence stars reveal some interesting problems, such as the lack of O-stars close to the zero-age sequence, the so-called helium and mass discrepancies. We emphasize that this last discrepancy was probably due to the unsafe atmosphere modelling used by spectroscopists. The comparisons for supergiants enlighten a number of most interesting problems: the He and CNO abundances in blue supergiants, the distribution of supergiants in the HR diagram and above all the variations of the blue to red number ratios with metallicity. Then, we examine the properties and chemistry of WR stars and the observations and interpretations concerning the great changes of WR numbers in galaxies of different metallicites. Finally, we emphasize the main WR filiations.  相似文献   

20.
Ulysses measurements of the solar wind electron heat flux as a function of heliographic latitude are presented. The latitudinal in the electron heat flux presented have been normalized by the radial gradient in the electron heat flux obtained during the in-ecliptic phase of the Ulysses mission (qe R–3.0). We find no significant variation in electron heat flux with latitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号