首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 562 毫秒
1.
某机有三项油箱隔板零件(镁合金铸件)在煤油介质中工作,要求用1~2大气压检查密封性能。我厂生产的铸件或从老厂求援的一批铸件均不能达到密封性要求,严重影响生产进展。为了提高该产品的密封性,在铸造工艺上已采取了许多措施,但由于ZM-5镁合金的显微疏松不易克服,产品渗漏的缺陷始终不能杜  相似文献   

2.
系统分析各类高性能制造以注重零件的几何尺寸精度所带来的问题,即在具备超精密、高精度加工能力后,由"合格的高精度零件"装配出的产品至今依然还是合格率低、参数稳定性差的本质内因.首次从零件制造微观角度提出了产品生产合格率低、参数稳定性差是由零件表面微观特征与产品技术特征非匹配性导致的,提出了全新的产品制造理念,从注重零件的几何尺寸精度向关注零件制造微观工艺特征与产品技术特征的匹配性和符合性转变.形成和建立起我国自主创新的高性能产品制造思想和产品制造工艺技术体系,才能从根本上解决产品生产制造合格率低、参数稳定性差等问题,才能形成有继承性、可持续、稳定的产品制造技术体系,而这一切是工业4.0制造模式无法解决的.  相似文献   

3.
本文介绍飞机壳体零件采用细孔铸造技术,在铸件中获得直径为3~6mm的直线和曲线通道。  相似文献   

4.
低熔点合金用途较广泛,它在我国工业中早有应用。如弯管、焊补机床床身及油缸等铸件的气孔砂眼等缺陷。但是在机械加工中却应用不多,特别是在航空产品的加工中则更少应用。我厂引进的“海豚”产品中,有一种杠杆,该零件结构工艺性不好,壁薄刚性弱且不易装夹。试制中有四道工序采用低熔点合金将两零件浇铸在一起后进行加工,既克服了上述缺点,又提高了生产效率,且保证了加工质量。通过试用证明,这种方法可广泛用于各种薄壁易变形零件的加工中。  相似文献   

5.
前言直至几年以前,要真正生产出优质实用的熔模铸钛零件是不可能的。自一九七○年开始,工业上才逐渐对此产生兴趣,目前估计已有10~20公吨钛合金熔模铸件从世界上现有的六个钛合金熔模铸造厂生产出来(其中三个工厂在美国,三个工厂在欧洲)。这些铸件几乎在各个技术领域得到了应用,重量从1克直至60公斤。  相似文献   

6.
某重点型号波纹管组合件的设计要求是缝焊,对照以往产品的结构,比较明显的情况是波纹管在零件的内侧。零件的厚度是3mm,波纹管的厚度是0.1mm,零件与波纹管的厚度比比较大。波纹管在零件的内侧会产生一个问题:波纹管在焊接过程中会逐渐收缩,到最后与零件之间产生间隙,导致局部形不成焊缝。研究通过减小车配间隙,增加冷却手段、滚轮厚度和压力等措施来实现大厚度比的零件和波纹管之间的缝焊。  相似文献   

7.
铝合金铸造不但制造成本低,周期短,而且成形工艺性好,适合制成各种复杂形状,为结构件设计提供了极大的灵活性.国外现代铸造成形工艺、先进生产过程控制和检测技术保证了铝合金铸造零件的可靠性,使飞机用铸造铝合金零件设计的铸件系数CF采用了"1",充分发挥了铝合金铸件在飞机减重和降低制造成本方面的优势.  相似文献   

8.
介绍了航空锻铸件的选材及毛坯制造过程中对工作环境、仪器、仪表、设备、工装、工艺过程、人员等实施质量控制,从而保证锻铸件毛坯满足各型航空液压泵使用要求的生产经验。  相似文献   

9.
惯性平台中的台体和本体均为复杂异构铸件,目前多采用人工划线法建立多个基准来进行测量,效率和精度低,易漏检误检。基于多频外差法的三维光学测量系统已广泛应用于航空、航天等制造领域,根据被测铸件异构的特点,结合双目视觉和相位光栅法较高的检测效率和精度,搭建了一套三维测量系统。首先通过平板标定法得到系统的固定参数和可变参数,然后利用数字光栅投影仪向被测零件表面投射三套不同频率的相移条纹图,相机同步采集变形条纹图,再利用四步相移和三频外差法得到周期为1的相位分布,以此为基准展开得到连续分布的绝对相位,结合极线约束和相位匹配重建出被测零件的三维点云数据,最后在三维软件中完成点云处理、曲面重构和三维测量。实验结果表明,系统的绝对测量精度小于0.1mm,能够实现异构铸件的三维尺寸测量,具有较高的检测效率。  相似文献   

10.
为解决大型薄壁铸件导轨梁在材料去除过程中因残余应力的释放与重分布导致变形超差的工艺难题,对导轨梁零件加工工艺进行分析,实现零件模型的简化与子结构分割;同时开展零件毛坯表面残余应力测量,成功建立零件毛坯初始应力模型。在此基础上结合实际加工工艺开展零件加工有限元仿真,模拟加工过程中由于材料去除引起的残余应力释放,预测了加工过程中残余应力重分布规律和加工变形情况。总结了零件加工变形的有限元仿真结果,提出抑制零件加工变形的工艺方案。经验证,改进后的工艺顺序使零件最大变形量由0.485 mm降至0.081 mm,降低83.3%,避免了零件在加工过程中的尺寸超差。同时该平面作为后续加工的基准,保证了后续加工的精度,为生产工艺优化提供了有效的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号