首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
COTS batteries are relatively inexpensive, readily accessible, and extremely versatile. These attributes allow the military to save time and money during the research and development stages. Of these COTS batteries, a 9-Volt (9 V) lithium/manganese dioxide battery is the subject of this paper. This 9 V battery has the ability to provide a low magnetic signature, which is very important to the Navy for many applications, Also, it is Underwriters Laboratories (UL) listed at the unit level; however, these UL tests cannot be directly related to the safety of these 9 V batteries when they are combined in various series and parallel configurations. Naval Surface Warfare Center (NSWC) Carderock was tasked to rate the safety of several such specialized battery packs. It was found that packs consisting of two 9 V batteries in parallel were relatively safe, experiencing no violent behavior. Battery packs with six 9 Vs in parallel vented and deformed the 9 V batteries, but no smoke or flames were noticed. A battery pack with thirty 9 V batteries, 2 in series with 15 legs, experienced venting, smoke, and flames under certain circumstances, After testing, the six and thirty 9 V packs were required to include the addition of various safety devices  相似文献   

2.
In the past, functional test requirements (FTR) or test requirement documents (TRD) and test program sets (TPS) were standalone items developed by individual engineers. In some cases, one engineer would write the FTR/TRD and another would develop the TPS. Commercial ATLAS FTRs are prepared in ARINC 616 and 626 ATLAS. Military TRDs are written in IEEE ATLAS 716 versions. Previous test reuse attempts have not been successful because additional software, like browsers, is required to support these efforts. It was difficult to justify writing new software; for example, browsers to manage the application software. Today, commercial-off-the-shelf (COTS) tools are in place to browse and view information from circuit diagrams to documents to source code. These tools can develop hierarchies to organize the information. These COTS tools are available throughout Boeing on many types of workstations and personal computers on every engineer's desk. This paper discusses how a reusable test library (RTL) is being developed using commercial-off-the-shelf (COTS) tools, such as Mosaic, to address commercial and military test applications. It describes each of the tools and the process to develop TPSs using the reuse library. It defines the metrics and benefits achieved  相似文献   

3.
Open system architectures based on commercial off-the-shelf (COTS) building block components offer the ability to leverage the latest technology into fielded products while minimizing the impact to the operational flight software, typically the most costly component of an avionics development or upgrade. Our team has developed a layered hardware and software approach based on industry standard hardware and software interfaces to abstract the application (operational) software developers from the underlying technology rolls to the hardware and operating system software that naturally occur as part of the commercial marketplace, A technology roll is defined as the replacement of a current product with a subsequent generation of a product from the same product family. In this article, we describe the components and the layered architecture of our open system architecture approach. We discuss specific system, hardware, and software technology insertions that incorporate the latest available technology and how these changes have been abstracted from the application software. The article concludes by discussing lessons Learned from the use of these common components and corresponding technology rolls across various platforms  相似文献   

4.
Replacement strategy for aging avionics computers   总被引:1,自引:0,他引:1  
With decreasing defense dollars available to purchase new military aircraft, the inventory of existing aircraft will have to last many more years than originally anticipated. As the avionics computers on these aging aircraft get older, they become more expensive to maintain due to parts obsolescence. In addition, expanding missions and changing requirements lead to growth in the embedded software which, in turn, requires additional processing and memory capacity. Both factors, parts obsolescence and new processing capacity, result in the need to replace the old computer hardware with newer, more capable microprocessor technology. New microprocessors, however, are not compatible with the older computer instruction set architectures. This generally requires the embedded software in these computers to be rewritten. A significant savings-estimated in the billions of dollars-could be achieved in these upgrades if the new computers could execute the old embedded code along with any new code to be added. This paper describes a commercial-off-the-shelf (COTS)-based form, fit, function, and interface (F3I) replacement strategy for legacy avionics computers that can reuse existing avionics code “as is” while providing a flexible framework for incremental upgrades and managed change. It is based on a real-time embedded software technology that executes legacy binary code on the latest generation COTS microprocessors. This technology promises performance improvements of 5-10 times that of the legacy avionics computer that it replaces. It also promises a 4× decrease in cost and schedule over rewriting the code and provides a “known good” starting point for incremental upgrades of the embedded flight software. Code revalidation cost and risk are minimized since the structure of the embedded code is not changed, allowing the replacement computer to be retested at the “blackbox” level using existing qualification tests  相似文献   

5.
Open systems architecture solutions for military avionics testing   总被引:1,自引:0,他引:1  
Raytheon makes extensive use of open systems architecture methods in developing special test equipment (STE) for testing military avionics equipment. Such use has resulted in significant cost and schedule savings in the development of production test equipment for radar and infrared systems. With open systems architectures, a test system can be assembled using COTS products. This brings economies of scale to test equipment, which is normally built in very low quantities. Therefore, the potential cost savings due to COTS usage is proportionately greater in STE than in the higher volume avionics systems that are tested. A second major benefit of using COTS products is that test system development schedule cycle time is greatly reduced. This paper describes the application of Open Systems Architectures (OSA) to avionics testing. The following major architectures are surveyed: VME bus, VXI bus, IEEE GPIB, IEEE 1149.1 JTAG test bus, 1553 Military Bus, Fibre Channel, and COTS Test Applications Software. We describe how the benefits of OSA have been extended at Raytheon into achieving vertical test commonalities. The flexibility of OSA can be exploited to provide an overall optimum test solution, taking all levels of test into account. For example, test systems can be tailored with COTS products to provide integrated methods for avionics tests at the module, unit, and system levels. Test systems can be configured to maximize the reuse of COTS hardware over all test levels. Test software can also be programmed to optimize such reuse over levels of test. Additional test verticality synergies derived from such OSA usage are described, including: test false alarm avoidance; test cones of tolerance optimization; and efficient test of field returns  相似文献   

6.
This paper identifies the design features of commercial-off-the-shelf (COTS) software that impact the lifecycle cost of automatic test system (ATS) solutions and provides a set of design guidelines. It demonstrates that the architecture of COTS software must be modular, based on correct functional allocation, should possess distribution capabilities, and contain open interfaces that remain backwards compatible. In the case of COTS development tools, the programmatic interface should be simple, extensible, and enforced in the development environment.  相似文献   

7.
NASA-ISC requires avionics platforms capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller (UMC) project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of stackable building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, (e.g. processor card, analog input/output card, high level analog card, and a Mil-Std-1553 card) were constructed to meet critical functions and unique interfaces  相似文献   

8.
基于COTS的航空电子软件开发   总被引:3,自引:0,他引:3  
介绍了商用货架产品(COTS)在航空电子软件开发中应用的优点和缺点,和基于COTS的航电软件构架;并给出了一个开发过程和部分开发工具。最后通过一个实例说明基于COTS的航电软件开发是实际可行的。  相似文献   

9.
Automatic Test Equipment (ATE) systems are used to qualify, accept, and troubleshoot electronic products. ATE systems may be in the form of large general-purpose systems that can test a wide variety of products or the more commonly used custom, turnkey systems that are designed for specific test application(s) and requirements. Turnkey ATE systems are labor-intensive; as a result, even a relatively simple turnkey tester is costly and may take months (or even years) to develop, integrate, and deploy. The main reason for this aspect of turnkey ATE systems is that even though the instrumentation may be off-the-shelf components, most everything else is custom and requires design, development, extensive debug and integration. Time and again, systems integrators have tried to find a solution that would combine the cost effectiveness of COTS systems with the flexibility of custom ATE. This paper suggests a solution to this problem and that it is feasible to combine COTS testers with custom requirements. This solution, called CreATE, provides a flexible architecture using COTS components (including instruments, cabling and interfacing products)  相似文献   

10.
Integrated modular avionics (IMA) is being suggested as the means by which new capabilities can be deployed on aircraft at an affordable cost. RTCA SC-200 is presently considering the guidance document for IMA. All of the functionality that IMA offers can be achieved through a conventional federated architecture; however, the cost, size, and weight penalties of the federated solution make it economically infeasible. IMA is seen as the way forward. It is assuming greater importance as the aircraft industry transitions to commercial-off-the-shelf (COTS) technology with its attendant obsolescence and reliability concerns. IMA may be one of the most cost-effective ways by which rapid obsolescence can be managed. Ironically, this move to COTS is also the greatest threat to IMA systems. IMA achieves reductions in size, cost, and weight by providing a set of flexible hardware and software resources that can be statically or dynamically mapped to a set of required avionics functional capabilities. This introduces a number of new complexities such as mixed criticalities and reconfiguration. We do not address these issues herein. Rather we discuss the mechanisms by which electronics degrades and how a classical safety assessment of a reconfigurable IMA system can be ified by this degradation. We argue that, with the advent of COTS, it is no longer justifiable to consider that electronics has an effectively constant failure rate. Physical considerations suggest that electronics failure occurs when environmental and operating stress causes the accumulation of damage to the underlying structures to exceed the threshold strength of the constituent materials and interfaces. Finally, we suggest how finite-life electronics effects may be mitigated.  相似文献   

11.
The cost of COTS     
Fairchild Defense, a division of Orbital Sciences Corporation, has been a pioneer in the use of Commercial-Off-The-Shelf (COTS) hardware, software, and tools in military equipment. Fairchild has developed a cost and schedule effective approach to the use of COTS elements. This paper discusses Fairchild's experience with the use of COTS in military equipment and special considerations imposed because of the military environment  相似文献   

12.
We investigated the in-orbit performance of a high-performance on-board computer developed with commercial off-the-shelf (COTS) technology in terms of its performance during the occurrence of single event effects. The processor worked and performed successfully both under normal and under solar flare conditions in 800 km altitude polar orbit. During a solar flare, the occurrence of single events increased by a factor of more than four compared with normal conditions. The area where single events occurred during the solar flare spread to the polar region, whereas normally they are limited to the region of South-Atlantic anomalies (SAA). Our results suggest that the performance of our COTS processor is sufficient for future space applications.  相似文献   

13.
The problem with aviation COTS   总被引:1,自引:0,他引:1  
Commercial Off the Shelf (COTS) has become a byword for acquisition reform, but there are significant risks associated with the use of COTS products in military systems. These risks are especially acute for aviation systems. This paper explains how COTS can negatively affect military acquisitions and gives ideas on how to plan and resolve COTS caused problems  相似文献   

14.
A 1984 survey of the nickel hydrogen (NiH2) battery industry is updated. Late 1980s and early 1990s issues are identified, and usage and testing results of the survey are summarized. NiH2 is the system of choice for new geosynchronous-earth-orbit (GEO) satellites and is being seriously considered for low-earth-orbit (LEO) applications. In five years, the annual cell production rate has doubled from approximately 1000 to 2000 cells. A number of cells under test have exceeded 20000 cycles at 40% DOD in LEO regimes, while other cells have achieved over 35 seasons in accelerated GEO regimes. The LEO database clearly indicates that NiH2 performance is at least as good as the best conventional nickel-cadmium performance demonstrated under test  相似文献   

15.
Advances in electronics over the past decade have produced major improvements in the power and flexibility of computer systems. Unfortunately current avionics systems for space applications typically have not leveraged these COTS advantages. A decade ago, the state-of-the-art for avionics systems made a step change to the Integrated Modular Avionics (IMA) used in the Boeing 777. This next generation avionics architecture is not based upon traditional Byzantine redundancy structures, but on a truth-based scheme where each element knows when an internal failure occurs and removes itself from the system. IMA utilizes a lock-step microprocessor design that communicates to a COTS Backplane for input/output, and to a Virtual Backplane/spl trade/ (a reliable high-speed serial bus) for intra-system communication. The system functions are implemented using a time and space partitioned operating system. The entire system provides the simplicity of a simplex system, implements the highest level of reliability providing complete flexibility to reconfigure both software applications and hardware interfaces, allows for rapid prototyping using low-cost COTS hardware, and is easily expandable beyond the initial point implementation. As the only 5/sup th/ generation avionics architecture, the concepts incorporated into Honeywell's IMA are ideally suited to be the backbone of the next generation Space Exploration Program avionics architectures.  相似文献   

16.
A major factor that will drive the definition and design of future avionics systems is affordability. Affordability is being addressed on numerous fronts such as hardware re-use, software re-use, COTS leveraging, and reduced cycle times. Each of these thrusts provide potential cost savings along with unique challenges. What is needed is a process that integrates these initiatives while ensuring the overall system objectives are achieved. An Open Systems-based process is key to integrating these initiatives and balancing affordability and system performance goals. Although Open Systems are being widely recognized as a key to affordability, most interpret Open Systems as a set of system attributes that need to be achieved. There are numerous claims of vendors saying they have an Open Systems architecture or how their system will evolve to an Open Systems architecture. This emphasis is not on increasing affordability but on attaching a politically correct label to their product. In this paper, we focus on the Open Systems process as the key to affordability. An Open Systems process is based on Open Systems principles. This paper discusses the Open Systems principles and process in detail and shows how this process integrates numerous affordability initiatives  相似文献   

17.
A major factor that will drive the definition and design of future avionics systems is affordability. Affordability is being addressed on numerous fronts such as hardware re-use, software re-use, COTS leveraging, and reduced cycle times. Each of these thrusts provide potential cost saving along with unique challenges. What is needed is a process that integrates these initiatives while ensuring the overall system objectives are achieved. An Open Systems-based process is key to integrating these initiatives and balancing affordability and system performance goals. Although Open Systems are being widely recognized as a key to affordability, most interpret Open Systems as a set of system attributes that need to be achieved. There are numerous claims of vendors saying they have an Open Systems architecture; or how their system will evolve to an Open Systems architecture. This emphasis is not on increasing affordability, but on attaching a politically-correct label to their product. In this paper, we focus on the Open Systems process as the key to affordability. An Open Systems process is based on Open Systems principles. This paper discusses the Open Systems principles and process in detail and shows how this process integrates numerous affordability initiatives  相似文献   

18.
19.
Lockheed Martin Missiles & Space (LMMS), Ultralife Batteries, Inc. (UBI), Eagle Picher Technologies, LLC (EPT), Sandia National Laboratories (SNL) and Rentech, Inc. (RTI) are developing lithium ion solid polymer electrolyte (Li-ion SPE) batteries. Under a new Advanced Technology Program (ATP), this team will develop new high-energy density cells and batteries for space and portable electronics applications. These new batteries will utilize new high-energy density anode and cathode active materials developed by SNL and RTI. UBI will incorporate these new materials into an optimized Li-ion SPE electrode laminate. EPT will develop batteries for aerospace applications based on this electrode laminate technology while LMMS will design the battery charge management controller and provide system expertise  相似文献   

20.
Sustainment of legacy automatic test systems (ATS) saves cost through the re-use of software and hardware. The ATS consists of the automatic test equipment (ATE), the test program sets (TPSs), and associated software. The associated software includes the architecture the TPSs run on, known as the control software or test station test executive. In some cases, to sustain the legacy ATS, it is more practical to develop a replacement ATE with the latest instrumentation, often in the form of commercial off-the-shelf (COTS) hardware and software. The existing TPSs, including their hardware and test programs, then need to be transported, or translated, to the new test station. In order to understand how to sustain a legacy ATS by translating TPSs, one must realize the full architecture of the legacy ATS to be replaced. It must be understood that TPS transportability does not only include translating the original TPS from an existing language (such as ATLAS) to a new language (such as "C") to run on a new test station, but includes transporting the run-time environment created by the legacy ATS. This paper examines the similarities and differences of legacy ATE and modern COTS ATE architectures, how the ATS testing philosophy impacts the ease of TPS transportability from legacy ATE to modern-day platforms, and what SEI has done to address the issues that arise out of TPS transportability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号