首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
在应变载荷控制下对TC21钛合金薄壁管光滑试件进行单轴、拉-扭比例、非比例恒幅、变幅加载试验,研究其疲劳行为。研究表明,TC21钛合金在单轴和多轴比例恒幅载荷下均表现为循环软化,并且应变载荷水平越大软化越明显。非比例变幅加载时,前期的大应变载荷对材料的轴向拉压特性具有强化作用,使得后期小应变载荷下的循环特性出现硬化现象。  相似文献   

2.
1Cr18Ni9Ti不锈钢的非比例循环特性实验研究   总被引:5,自引:0,他引:5  
杨显杰  高庆  孙训方 《航空学报》1994,15(10):1261-1266
在高温多轴非比例循环加载下,对1Cr18Ni9Ti不锈钢进行了在单轴和圆形应变路径下的循环试验、非比例循环加载历史试验以及在圆形应变路径下的应变幅值历史效应的试验。研究了非比例循环附加硬化、应变幅值历史效应、循环加载历史效应及这些效应的温度依赖性,得到了若干有意义的结果。  相似文献   

3.
基于临界面法的多轴疲劳损伤参量的研究   总被引:14,自引:0,他引:14  
以薄壁管拉扭疲劳试件为研究对象,在分析多轴损伤临界面上的应力与应变变化特性的基础上,根据多轴疲劳临界损伤平面原理,利用多轴临界面上的剪切应变幅与相邻两个最大剪切应变值γmax之间的法向应变幅ε*n作为形成多轴疲劳损伤参量的主要参数,提出基于拉伸和剪切两种形式的多轴疲劳损伤参量。所提出的多轴疲劳损伤参量不含有任何材料常数,并可同时适用与多轴比例与非比例加载情况,且可退化成单轴的形式。  相似文献   

4.
LY12铝合金的拉扭复合加载疲劳   总被引:2,自引:1,他引:2  
对LY12铝合金的拉扭复合加载疲劳性能进行了研究,并用扫描电镜对疲劳试样的断口进行了观察.试验选用单轴轴向、0°同相拉扭复合、45°非同相拉扭复合、90°非同相拉扭复合和纯扭转五种加载路径,并使试样在不同加载路径下的最大等效应变值相等.结果表明,LY12铝合金试样在五种加载条件下,均出现循环硬化和饱和现象.LY12铝合金试样在纯扭转加载时的寿命最长,在90°非同相拉扭复合加载时的寿命最短.用Wang-Brown模型的损伤参量,可以较好解释不同加载条件的疲劳寿命差异.单轴轴向加载和0°同相拉扭复合加载试样的断口均出现疲劳条纹,纯扭转加载和90°非同相拉扭复合加载断口形貌以裂纹面间相互摩擦的痕迹为主.  相似文献   

5.
考虑应力梯度影响的多轴缺口疲劳寿命预测   总被引:1,自引:0,他引:1  
钟波  王延荣  魏大盛 《航空动力学报》2018,33(11):2602-2610
给出了几种典型拉-扭加载路径在新定义主坐标系下的π平面投影路径,并基于π平面投影路径提出了一种新的多轴疲劳损伤参量;考虑材料多轴加载的非比例附加强化效应,提出了一种非比例附加强化系数的预测方法和非比例度的定义方法;进一步考虑缺口试样多轴加载下的拉-扭应力梯度分布,结合有限元弹性分析的结果,提出了一种考虑多轴效应的等效应力梯度因子,从而发展了一种新的考虑应力梯度影响的多轴缺口疲劳寿命预测模型,并选用GH4169合金650℃下的多轴缺口疲劳试验结果对所提出的寿命模型进行验证。结果表明:①所提出的多轴疲劳损伤参量有明确的物理意义,不仅适用于多轴疲劳,也适用于单轴疲劳;②所提出的等效应力梯度因子仅需通过弹性有限元分析确定,适合工程实际应用;③新的寿命预测模型对GH4169材料多轴缺口疲劳试验的寿命预测结果较好,基本位于2倍分散带以内。   相似文献   

6.
徐可君  肖阳  秦海勤  贾明明 《航空学报》2021,42(5):524109-524109
为研究非对称加载下疲劳-蠕变交互作用对粉末高温合金涡轮盘寿命的影响,开展了550 ℃时不同应力水平及保载时间下FGH96粉末高温合金的低周疲劳-蠕变试验,得到了材料的循环应变响应及疲劳-蠕变寿命随保载时间的变化规律。在此基础上,结合材料的循环软化特征,以循环应变范围作为损伤控制参量,将其与保载时间和动态循环次数相关联,提出了一种基于循环应变特征的疲劳-蠕变寿命预测方法。该模型综合考虑了载荷历程和保载时间对材料疲劳-蠕变损伤的影响,能够实现不同应力水平、不同保载时间下FGH96粉末高温合金疲劳-蠕变寿命预测以及消耗寿命的动态跟踪。通过与工程上常用的几种模型进行对比,发现新模型具有较高的预测精度,且预测结果分散性较小,寿命预测结果基本位于±2.5倍寿命分散带之内,预测标准差小于0.4。  相似文献   

7.
比例与非比例加载下30CrMnSiA钢多轴高周疲劳失效分析   总被引:1,自引:0,他引:1  
为了分析比例与非比例加载下,30CrMnSiA钢的多轴高周疲劳的失效规律。通过对30CrMnSiA钢材料开展比例与非比例(δ=90°)加载下的多轴高周疲劳试验,研究了应力幅比和相位差对疲劳寿命、断口特征及裂纹起裂角度的影响。试验结果表明,对于比例与非比例加载,随着应力幅比的增大,多轴疲劳寿命逐渐增加。对疲劳断口分析发现,裂纹萌生于试件表面,断口有明显的疲劳源区、扩展区和瞬断区,不同加载路径下的试件断口形式有明显差异。通过对起裂角度的分析发现,应力幅比大于0.25时表面裂纹有明显的第Ⅰ阶段向第Ⅱ阶段的转变,且第Ⅰ阶段沿着接近最大剪应力幅值平面方向扩展,第Ⅱ阶段沿着接近最大正应力平面方向扩展。此外,对典型试件的疲劳断口及表面扩展路径进行了分析,研究表明多轴疲劳试验试件裂纹的特征比值在0.3~0.5之间,且裂纹沿深度方向扩展至300 μm时占总寿命的85%以上。   相似文献   

8.
采用航空工业常用材料2A12-T4铝合金,针对不同应力幅比,进行了拉扭复合加载下相位差对多轴高周疲劳失效的影响试验,研究了恒定应力幅比λ=1下相位差对多轴疲劳失效的影响,对不同应力幅比下疲劳寿命随着相位差的变化进行了对比,并分析了λ=1时不同相位差下试样的断裂形式。结果表明,在相同的Von-Mises等效应力下,当应力幅比λ=1时,随着相位差的增大,疲劳寿命逐渐升高,且与相位差的正弦近似成指数关系。在不同应力幅比下随着相位差的增大,疲劳寿命均呈现升高的趋势,但只有λ=1的情况对疲劳寿命的影响最大。试件断裂呈现Ⅰ型与Ⅱ型的混合型破坏特征,随着相位差的增大,试件断裂由Ⅰ型裂纹占主导逐渐过渡到Ⅱ型裂纹占主导。  相似文献   

9.
 开展了粉末高温合金 FGH95 550℃、600℃和 650℃等 3种温度下控制应变率单向拉伸试验和 550℃下循环加载试验研究,结果表明 :600℃以下,快、慢应变率时,5%的试验应变范围内应力—应变曲线都一直上升,不存在应力饱和现象,热恢复效应不显著;但 650℃下慢应变率时则存在较明显的应力饱和现象,反映出在此条件下必须考虑蠕变效应。温度越高应变率对 FGH95的拉伸力学性能影响越明显,但总的说来是一种应变率不甚敏感的循环硬化材料。最后,在试验的基础上建立了 FGH95的 Bonder-Partom统一弹-粘塑性本构模型,理论与试验吻合较好,表明该模型能够模拟 FGH95的应力-应变关系曲线、应变率响应特性以及循环硬化特性,从而为 FGH95粉末高温合金构件的高温应力分析打下了基础。  相似文献   

10.
在分析多轴疲劳几种常用非比例度定义的基础上,提出了一种非比例度定义方法,进而以American Society of Mechanical Engineers(ASME) 规范案例中非比例加载多轴疲劳设计准则采用的应变参量作为基本损伤参量,发展了一种新的多轴疲劳寿命预测模型.结果表明:①所提出的非比例度定义可以描述任意已知轮廓的、非周期的、变幅的非比例加载路径;②与两种常用的多轴非比例加载疲劳寿命模型的预测结果对比可知,新的寿命预测模型对14种比例和非比例加载路径下304不锈钢材料的寿命预测与试验吻合更好,预测结果基本位于2倍分散带以内.   相似文献   

11.
用等效平均损伤模型计算剩余寿命方法的研究   总被引:1,自引:0,他引:1  
胡明敏 《航空学报》2000,21(3):262-266
分析了复杂载荷下材料的损伤累积过程和疲劳寿命计自身材料疲劳损伤与其不可逆电阻变化响应的联系。疲劳寿命计自身材料疲劳损伤演变、损伤累积过程以电阻变化速率和变化量显示了其全貌。假设其等效平均损伤等一般规律与金属材料的疲劳情况相类似,结合本文给出拟合精度很好的材料应力寿命曲线,得出随机载荷下剩余寿命计算的简便方法,具有较高可信度。初步实验验证很令人满意。  相似文献   

12.
疲劳断口形貌与材料性能的关系   总被引:1,自引:0,他引:1  
谢里阳  徐灏  王德俊 《航空学报》1991,12(4):179-182
1.疲劳断口分析概述 当金属材料承受循环载荷时,随材料的初始状态以及应力-应变水平不同,将在整个体积内发生循环硬化或循环软化现象。开始时,这些变化是在受载金属中均匀发生的。当循环周次达到一定的数值时,某些变化将集中在局部区域进行,并导致出现微观疲劳裂  相似文献   

13.
用塑性滞后能原理估算随机载荷下的疲劳寿命   总被引:2,自引:1,他引:2  
吴富民  田丁栓 《航空学报》1994,15(3):264-268
 材料的疲劳损伤包括静力损伤和循环损伤,静力损伤为第一次静力加载引起的塑性应变能与静力韧性之比;循环损伤由循环塑性滞后能与疲劳韧性之比来计算,计算中计及了材料循环硬化(或软化)引起的屈服应力增大(或减小)的影响。为了简化计算,假设在循环加载时应力一应变曲线均按迟滞回线规律变化;不同应力变程下材料疲劳韧性可由对称循环的应力控制疲劳试验确定。本文提出了一种比较合理又便于工程应用的、用塑性滞后能原理估算随机载荷下疲劳寿命的新方法,初步的试验验证是令人满意的。  相似文献   

14.
Multiaxial fatigue life prediction of composite materials   总被引:1,自引:0,他引:1  
In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms.  相似文献   

15.
用基于Neuber法则的各向异性多轴近似应力应变分析方法,计算了沿不同方向加载时,定向凝固合金DZ125和单晶DD6材料缺口构件,弹塑性应力应变分布以及应力集中处的弹塑性应力-应变响应.同时,将微分形式的、考虑了时间效应的Neuber法则拓展到各向异性多轴保载情形,给出了拉伸保载时缺口根部的应力-应变响应.计算结果显示,单轴循环模拟结果与试验数据吻合,缺口构件循环加载以及拉伸保载预测结果与物理实际相符.证明了基于Neuber法则的各向异性多轴应力应变分析方法,可用于国产定向凝固合金和单晶材料循环加载以及拉伸保载分析.   相似文献   

16.
涡轮叶片高温多轴低周疲劳/蠕变寿命研究   总被引:4,自引:1,他引:3  
彭立强  王健 《航空动力学报》2009,24(7):1549-1555
针对航空发动机涡轮转子叶片工作环境,对Manson-Coffin多轴疲劳预测方程和SWT(Smith-Waston-Topper)公式进行修正,同时采用尚德广多轴疲劳损伤参量,给出涡轮叶片新的疲劳寿命预测方法,以适应涡轮叶片高温变幅非比例加载下疲劳损伤情况.通过算例计算了某涡轮叶片疲劳寿命及1000 h的总损伤,与叶片实际疲劳破坏相吻合,验证该高温多轴疲劳损伤计算模型的合理性和可行性.   相似文献   

17.
基于应力循环特征的裂纹萌生寿命预测方法   总被引:3,自引:1,他引:2  
以两种镍基高温合金的应力循环特征为基础,即粉末高温合金FGH95的循环硬化继而软化及变形高温合金GH4169的循环软化特性,寻求载荷历程相关的损伤参量,进而建立应力弱化损伤模型,以考虑载荷历程对疲劳寿命的影响.建立的应力弱化损伤模型可以较好地预测不同循环载荷条件下的疲劳寿命,其预测精度不低于传统方法,且优势在于使建立模型所需要的试样数量大大减少.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号