首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
通过建立五排客舱的几何模型及客舱烟气流动的数值仿真模型,采用RNG k-ε湍流模型对客舱内的湍流流动进行描述。基于Fluent对火灾阴燃阶段客舱内烟气浓度场和温度场进行三维数值模拟分析,预测了烟气浓度随时间变化规律。结合适航规章分析烟气中CO、CO2浓度对客舱空气品质及乘客健康安全的影响,给出火灾紧急措施建议,同时也为大型运输类飞机烟雾的适航审定符合性验证方法的研究提供基础。  相似文献   

2.
总结了飞机客舱内可能存在的空气污染物及其来源,分析统计了国内外现行的室内各类空气污染物浓度标准,并结合已有的各类实际机型客舱空气品质的调查报告探讨了机舱内空气污染物对人体健康的影响。研究结果表明:飞机客舱内可能出现的污染物的浓度基本上满足现行标准的限值,但在极少数的情况下气态污染物的浓度可能大于限值,故不能排除由于环境条件暴露所引起的对人体健康的影响。因此,建议民用航空部门严格审查当前适航规章的适用性并注重对于客舱空气质量的评价。  相似文献   

3.
针对现有飞机客舱空调采用常规的恒值信号送风,无法将引气污染物快速排出舱外的问题,采用计算流体力学(CFD)技术建立Boeing737飞机客舱仿真模型,并使用粒子图像测速(PIV)实验验证客舱仿真模型的准确性。提出客舱空调采用梯形信号送风,与客舱空调常规的恒值信号送风进行对比,以NO2为引气污染物,模拟在相同通风量不同信号送风下,天花板送风、侧壁送风、混合送风方式的流场特征与污染物扩散规律,将等效稀释通风量指标与吹风感指标结合,确定飞机空调最佳送风工况。仿真结果表明:采用等效稀释通风量指标对客舱整体排污效果进行评估,相比于恒值信号送风,客舱空调采用梯形信号送风在天花板送风、侧壁送风、混合送风方式下等效稀释通风量分别提高了78.2%、34.3%、23.1%。其中,客舱空调使用梯形信号送风在天花板送风方式下具有最好的排污效果,并且其吹风感指标DR(Draft Rating)低于20%,满足乘客热舒适性要求,梯形信号送风的吹风感指标优于方波信号送风,排污效果优于正弦信号送风。  相似文献   

4.
陈希远  王振斌  马博文  杨建忠 《航空学报》2018,39(7):121994-121994
为充分认识飞机座舱内污染物传播机理并控制和减少座舱内污染物传播,研究了不同送风方式对座舱内污染物传播特性及空气品质的影响。以波音737-200机型为研究对象,利用CFD技术建立了5排座舱模型,模拟计算了天花板和天花板+侧壁两种送风方式下座舱内气流场及污染物浓度场,通过等比例实验舱对部分工况气流场和污染物浓度值进行验证,并以空气龄为评价指标对空气品质进行评价。结果表明:在同等送风量下,天花板+侧壁送风更有利于污染物的扩散,通风效果充分,而天花板送风更容易造成污染物单点聚积,通风效果较差,且经济性较差。  相似文献   

5.
飞机客舱内的空气品质越来越受到关注,舱内颗粒物浓度超过限值会对人体健康造成伤害。因此在飞机通风系统设计时必须考虑座舱颗粒物浓度限值对系统设计的约束。可吸入颗粒物包括粗颗粒物PM10和细颗粒物PM2.5。以某民用飞机为研究对象,提出飞机座舱颗粒物浓度评估方法。通过对国内外相关技术文献调研并进行指标权衡分析,得到颗粒物浓度权衡指标限值。以舒适值作为设计需求,对某民用飞机通风系统设计方案的需求符合性进行评估。结果表明,不考虑舱内源产生的颗粒物时,达到稳定的舱内颗粒物浓度与座舱容积、通风量无关,座舱内颗粒物浓度稳定值PM2.5为31.5 μg/m3,PM10为51.75 μg/m3。为满足座舱颗粒物环境舒适性设计需求,需增加过滤器。经计算,不安装再循环过滤器时,引气过滤器效率最低限值为5.5%;不安装引气过滤器时,再循环过滤器效率最低限值要求为26%。  相似文献   

6.
黏性对高压空气弹射装置内弹道性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
针对高压空气弹射装置中,气体黏性流动造成的内耗散和沿程损失对内弹道性能的影响,结合高压下空气黏度公式,重点考虑低压室内的黏性流动,得到了未充分发展黏性流体在非定常状态下的能量损失计算方法。基于高压空气真实气体效应分析,建立了考虑气体摩擦的高压空气弹射内弹道数学模型,进行了数值求解。对比结果表明:气体摩擦效应对快速、瞬时过程造成的干扰量较小,对象宏观特性变化不大,低精度系统中可忽略不计。通过对结果的规律性进行探究,发现摩擦效应降低了有用功的转化率,减缓了气体膨胀速率,造成低压室压力的非均匀分布、高压室到低压室的质量流量波动和弹体初始时刻的碰撞。   相似文献   

7.
民用飞机客舱舱门区域温度控制研究   总被引:1,自引:1,他引:0  
对民用飞机客舱舱门区域温度控制进行了研究,建立了客舱舱门区域温度计算模型,并且提出了客舱舱门区域温度控制方法:即客舱舱门区域温度控制主要通过加热器来提高供入舱门区域的空气温度来实现;而舱门接触温度控制主要通过在舱门结构梁与内饰板之间布置绝热层或增加内饰板的热阻来实现。同时为避免在某些工况下舱门加热器出口空气温度太高舱门区域加热器需设置自动关断逻辑。  相似文献   

8.
MD-90飞机采用成熟的空气循环式空调系统,为客舱和驾驶舱提供调节空气,用于通风、空气循环、增压和温度调节,由制冷系统、座舱温度控制系统、增压控制系统、再循环系统、冲压空气通风系统与分配系统等子系统组成(参见图1).本文将对与空调系统密切相关的气源系统进行介绍和分析.  相似文献   

9.
建立了EE舱通风失效状态下温度计算模型,计算了热天巡航状态下通风失效后EE舱空气温度变化。针对通风失效后一段时间内EE舱空气超温的情况,提出了通风失效后可关断部分不影响飞行安全的电子设备以降低进入EE舱的热流、利用飞机内外压差产生的排气冷却备份、降低绝热层热阻等设计和操作措施的建议。  相似文献   

10.
现代的大型客机巡航高度一般都在万米以上,坚固的机身和增压系统可以保证乘客在这样的高度自由自在地生活。一旦发生飞机客舱失密或增压系统故障等意外事故,使客舱内的空气压力、氧气浓度不能满足人体正常生活所需,机载的氧气系统就会开始工作,释放出氧气,维持乘客的生命。  相似文献   

11.
 将歼击机前机身置于电辐射加温器内,当座舱盖温度达60℃,飞机座舱驾驶杆周围温度稳定在40℃时,座舱空气调节系统使用不同的供气温度、供气流量、含湿量进行通风降温,观察对座舱温度和人体温度参数的影响。供气温度与座舱三球温度指数(WBGT)和座舱平均舱温(Tdb)呈正相关。供气流量300kg/h降温效果优于250kg/h。供气温度与20min时的平均皮肤温度下降值(ΔTsk)呈负相关。供气温度高,人体出汗量高,人体热反应明显。WBGT30℃,使用0℃供气温度在短时间内可使座舱温度和人体Tsk降至工效区范围,多数指标可满足国家军用标准的要求。  相似文献   

12.
矩形埋入式进气口是一种新型冷风道引气方式,其功能是将飞机外部冷空气引入飞机内部使用。所讨论的矩形埋入式进气口主要应用于发动机舱通风冷却系统。通过对矩形埋入式进气口在亚-跨-超声速范围内流量特性的数值仿真计算,发现在条件不变的情况下,随着导流板角度增大,进气口引气流量单调减小。结合风洞吹风试验结果和工程实际需要,认为导流扳角度在15°左右可以参考使用,研究结果可为发动机舱通风冷却系统设计提供参考。  相似文献   

13.
朱明生 《推进技术》1998,19(1):79-82,94
介绍了用一甲肼浓缩采样采集空气中三肼混合气体,用分光光度法分别测出肼、一甲肼和偏二甲肼各组分的含量。测定结果通过标准气验证,相对误差小于17%,各组份回收率均大于80%。本方法适用于空气中低浓度三肼废气的测定。  相似文献   

14.
阐述了飞机环境控制系统功能试验的内容和国内新一代ARJ21支线飞机环控功能试验的现状,提出研制飞机环控功能自动化试验系统的架构,研究了飞机环控功能自动化试验中大流量压缩空气流量测量与座舱升降压速率测量的技术方法,最后给出了试验空气加热温度与座舱压力的控制结构.  相似文献   

15.
基于单舱惰化冲洗模型理论,采用 Matlab 语言,针对民用飞机惰化系统设计开发出系统架构权衡分析工具,该工具后台程序除集成气源压力接口数据库、飞行参数自动生成模型和 ASM 真值表外,还包含根据落地燃油箱氧气浓度对下降阶段大流量模式下 NEA 最小流量的寻优算法,通过运用该工具,对全燃油箱惰化民机的惰化系统引气增压子系统形式、NEA 流量、 燃油箱通气形式、燃油箱极限氧气浓度对 ASM 数量和引气质量流量的影响进行定量研究,全面比较开式通气架构与闭式通气架构下惰化系统的性能特征,为飞机惰化系统架构设计提供一种工程方法参考。  相似文献   

16.
介绍用GM600型FID气相色谱仪检测空分装置中碳氢化合物,特别是乙炔含量的方法.  相似文献   

17.
飞机座舱臭氧浓度分析研究   总被引:1,自引:0,他引:1       下载免费PDF全文
飞机座舱内臭氧浓度会影响舱内空气质量,进而影响到人员身体健康。为此,适航当局在适航条例及其修正案中对座舱内臭氧浓度进行了规定。根据臭氧浓度相关适航条例要求,选取国内航线上两个地方臭氧浓度的测量数据,进行了臭氧浓度的计算分析。  相似文献   

18.
俞勤芳 《航空学报》1993,14(2):47-51
建立了座航两种气密性检验方法的内在联系,可从压降法测试中算出泄漏量,也可从流量法测试中算出压降法的降压时间。为了实际使用方便,还建立了有关图表,供直接查阅。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号