首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
张开晨  李建中  金武  袁丽  李夏飞 《推进技术》2019,40(9):2067-2074
为了解决液态燃料旋转爆震发动机点火起爆困难和结构紧凑等问题,进行了以液态航空煤油为燃料的预爆器设计,包括离心/预膜复合燃油雾化喷嘴、点火/传焰凹腔、三枝管预爆室等结构。以液态航空煤油/氧气为工作介质,进行了离心/预膜复合燃油雾化喷嘴雾化特性和预爆器爆震燃烧特性试验研究,获得了离心/预膜复合燃油雾化喷嘴雾化粒径变化规律,以及预爆器内爆震波压力、传播速度等变化规律。研究表明:离心/预膜复合燃油雾化喷嘴的雾化效果随气流流量和油压增加而改善,预爆器接近出口位置(PCB5处)爆震波峰值压力可超过3.80MPa,爆震波传播速度可达1800m/s;随着当量比增加,预爆器内过驱爆震位置提前,有利于缩短预爆器的长度。  相似文献   

2.
液态碳氢燃料旋转爆震发动机起爆过程试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了分析液态碳氢燃料/纯净空气旋转爆震发动机从点火到旋转爆震波稳定传播过程的影响因素,采用预爆震管点火进行了相关试验研究。获得了预爆震波压力、燃烧室油气比、来流总温、点火器安装方式等对旋转爆震发动机起爆过程的影响。试验结果表明:旋转爆震波起爆时间随着预爆震波压力升高而缩短;来流总温740K,变化当量比时,越接近当量比1,旋转爆震起爆时间越短;工质为当量混气时,来流总温通过影响燃油的蒸发过程进而影响旋转起爆时间,总温673K以上时,起爆时间约10ms;预爆点火器垂直安装比切向安装更快形成旋转爆震波。  相似文献   

3.
预爆管爆震波衍射特性数值研究   总被引:1,自引:0,他引:1  
为了实现预爆管出口爆震波向主爆管的成功传播,针对预爆管出口不同几何形状,开展了数值模拟研究,获得了爆震波从预爆管向主爆管传播的衍射特性.研究表明:当预爆管出口为直喷管时,不能实现向预爆管出口截面上游传播的爆震燃烧;当预爆管出口扩张角为45°时,可以实现爆震波在主爆管内向衍射面上、下游传播,研究结果获得的爆震波衍射特性得到了试验验证.   相似文献   

4.
李建玲  范玮  秦红强  熊姹  严宇 《推进技术》2010,31(4):508-512
为了研究基于液态燃料的爆震波点火技术,进行了一系列液态煤油/氧气爆震波点火实验。实验中氧气和煤油的供给压力分别为1.0 MPa和0.7 MPa,火花塞点火能量为50 mJ。研究了两相爆震波点火技术的基本特性,实验表明:采用低点火能量能够快速产生充分发展的爆震波,煤油/氧气爆震压力可达4.0 MPa,爆震波速度可达1500 m/s到2001 m/s,尾焰温度约为2075 K。开展了两相爆震波由单管向多管传播的实验,验证了两相爆震波多管点火技术的可行性,目前可实现四管同步点火。实验显示两相爆震波点火技术重复性强,多管点火具有较好的同步性,时间差别为几十个微秒量级,适用于多燃烧室液态火箭发动机的同步点火。  相似文献   

5.
预爆震管已成为旋转爆震发动机的主流点火方式,为研究预爆震管点火方式下旋转爆震波的起始和传播过程,本文采用动态压力传感器、离子探针以及高速摄影等实验手段,分析了旋转爆震波的建立过程,探讨了预爆震管与燃烧室的相互作用,总结了预爆震管出口直径、初始填充压力以及排气时间对旋转爆震波建立和传播的影响。研究表明:由于衍射作用,从垂直安装预爆震管传出的爆震波,在燃烧室内迅速发生解耦,形成来两道传播速度相同、方向相反的的低速燃烧波。两道燃烧波沿燃烧室周向不断加速并对撞,对撞多次后最终发展成一道旋转爆震波。预爆震管出口直径对旋转爆震波建立时间的影响要明显大于初始填充压力的影响。增大预爆震管出口直径,可提高燃烧室内初道激波和燃烧波的强度,有利于降低DDT时间,但由于预爆震管对旋转爆震波的传播具有一定消弱作用,旋转爆震波的平均传播速度略有减小。当预爆震管处于排气阶段时,旋转爆震波仍可稳定传播,其排气过程并不影响旋转爆震波建立时间。  相似文献   

6.
煤油/空气气动阀式脉冲爆震发动机试验   总被引:10,自引:4,他引:6  
为了研究煤油/空气气动阀式脉冲爆震发动机(简称PDE)的爆震波特性,建立了一整套试验系统,在进气加温和燃油加温的条件下,以液态煤油为燃料、以空气为氧化剂,在内径100 mm、长为2000 mm的爆震管内进行了大量的多循环爆震试验。研究了液态煤油和低污染空气(接近纯空气)形成的可爆混气的爆震波特性,研究了气动阀和空气加热器的设计方法等。研究结果为进一步研究液态燃料和高污染空气形成可爆混气的爆震燃烧机理提供了依据,为研制工程应用的PDE提供理论和实践基础。   相似文献   

7.
为了揭示空桶型旋转爆震燃烧室内爆震波的建立过程及工作特性,分别采用火花塞点火、垂直预爆震管点火和切向预爆震管点火,实验研究了不同点火方式下的爆震波起爆和稳定传播特性。喷注器采用环缝-喷孔对撞式设计,燃料和氧化剂分别为乙烯和富氧空气。结果表明,在空桶型旋转爆震燃烧室中,3种点火方式均可成功起爆并获得稳定传播的爆震波,点火方式对旋转爆震波的传播方向影响较小;与火花塞点火相比,垂直预爆震管点火和切向预爆震管点火均能拓宽旋转爆震燃烧室的稳定工作范围;在氧化剂供给流量和当量比相同的条件下,点火方式的改变并未影响旋转爆震波的传播速度大小;使用预爆震管点火时,旋转爆震波的建立时间较火花塞点火短,且呈现出更小的离散性。  相似文献   

8.
煤油气动阀式脉冲爆震发动机爆震波压力特性试验   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究煤油(C12H24)气动阀式脉冲爆震发动机的爆震波压力特性,通过进气加温和燃油加温,实现了以液态煤油为燃料,以空气为氧化剂,在内径0.1m,长2m的爆震管中产生了连续稳定的爆震波。分析了不同进气温度和小同燃油温度对气动阀出口流场和油雾场的影响,进而研究了不同进气温度和不同燃油温度对爆震波压力特性影响:结果表明,试验选定的双旋流加直流气动阀,当进气温度为373K和燃油温度为363K时,能够形成比较均匀的可爆混气,在爆震管内成功地产生了连续稳定的爆震波,爆震波压力峰值最大。获得进气温度和燃油温度对气动阀式PDE爆震波特性影响,为深入研究以液态煤油为燃料,空气为氧化剂的气动阀式脉冲爆震发动机工作性能提供了依据。  相似文献   

9.
气动阀式脉冲爆震发动机部分充填机理研究   总被引:1,自引:1,他引:0  
研究了不同部分充填比例对煤油/空气气动阀式脉冲爆震发动机(PDE)的爆震波压力特性影响,初步分析了部分充填的爆震管内一系列波相互作用的机理。研究结果表明,在气动阀选定、爆震管长度和爆震管内部结构一定条件下,随着脉冲爆震发动机可爆混气充填爆震管比例的降低,虽然爆震波压力峰值略有下降,但是,单位体积可爆混气获得的冲量线性增加,提高了脉冲爆震发动机的工作性能。研究结果对于煤油/空气气动阀式脉冲爆震发动机的总体优化设计,提高PDE的工作性能具有重要的参考价值。   相似文献   

10.
煤油/空气三管气动阀式脉冲爆震发动机   总被引:3,自引:0,他引:3  
李建中  王家骅  唐豪  袁丽 《航空学报》2009,30(11):2052-2058
 在煤油/空气单管气动阀式脉冲爆震发动机(PDE)研究基础上,建立了煤油/空气三管气动阀式PDE实验系统。在进气加温的条件下,以煤油为燃料,低污染空气为氧化剂,在内径为100 mm、长为2 000 mm的3个爆震管组成的三管气动阀式PDE中进行了多循环爆震实验,成功实现总工作频率30 Hz情况下,保证三管正常时序工作,在每个爆震管中均获得稳定发展的Chapman Jouguet(CJ)爆震波,研究了共用进气道对爆震室充填混气的影响和不同工作频率下三管气动阀式PDE的爆震波压力特性。研究结果为进一步研究多管PDE提供了基础,为探索脉冲爆震 涡扇组合发动机(PDTE)的可行性提供了初步的理论依据。  相似文献   

11.
郑大勇  胡骏 《推进技术》2021,42(7):1553-1560
为研究液氧甲烷发动机燃烧室点火冲击特性及影响因素,根据爆轰波产生的机理,建立了甲烷推进剂液相蒸发数学模型,采用C-J(Chapman-Jouguet)爆轰理论,计算和分析了不同混合比、初温及初压对爆轰参数的影响规律。结果表明,爆轰波的强度与初压、初温及混合比密切相关。初压越高,初温越低,越接近化学当量混合比时,爆轰压比、温度比和爆轰速度越大;减小点火时刻推进剂积存量,增强燃烧装置点火能力,可降低爆轰波强度,减少点火瞬态冲击。  相似文献   

12.
为研究富氢燃气旋转爆轰波传播特性,利用氢气与氧气预燃烧产生的富氢燃气作为燃料,空气为氧化剂,开展了旋转爆轰实验研究。对富氢燃气旋转爆轰压力变化、时频特性及传播速度等参数进行了分析,研究了不同传播模态下富氢燃气旋转爆轰波传播特性。研究表明:本文实验条件下,富氢燃气与空气旋转爆轰的传播模态主要受当量比影响,当量比高于1.06时呈现单波模态,随着当量比减小,旋转爆轰波呈现单波-双波过渡模态,即同一工况下,单波模态和双波模态交替出现,当量比减小到0.68左右时,基本呈现复杂的双波模态;在270 g/s的空气流量下,当量比增大,旋转爆轰波在环形燃烧室内的传播速度随之提高,但当量比到达临界点以后,传播速度提高不明显;在相同当量比下,当空气流量增大到370 g/s 时,旋转爆轰波的传播速度会进一步提高;空气流量越大,临界点对应的当量比越低,其中270 g/s空气流量对应临界当量比为1.32,370 g/s空气流量对应临界当量比1.16;达到临界当量比以后,传播速度受当量比和空气流量影响不大。  相似文献   

13.
壁温蒸发器对脉冲爆震发动机工作性能的影响   总被引:2,自引:1,他引:1  
设计了脉冲爆震发动机(PDE)壁温蒸发器,利用PDE工作时的壁温对煤油进行预蒸发,以改善煤油在PDE中的起爆性能。通过适当设计的油路系统将煤油蒸汽供入由汽油启动工作的PDE中,在改变PDE工作频率、蒸发器供气量和PDE煤油/汽油比例等条件下,对PDE的爆震特性进行了研究。研究结果表明,不同工作频率和蒸发器内的余气系数对PDE点火、起爆特性和爆震波压力、速度特性均有明显影响。使用经过预蒸发的煤油/汽油混合燃料能有效缩短点火时间和爆震波形成过程,对煤油进行预蒸发可以很好地提高多循环、吸气式两相PDE的爆震特性。  相似文献   

14.
煤油富燃燃气旋转爆震燃烧实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
胡洪波  严宇  张锋  洪流  陈宏玉 《推进技术》2020,41(4):881-888
为了了解煤油富燃燃气旋转爆震燃烧的过程及其特点,采用液体煤油一次燃烧后的富燃燃气与富氧空气二次爆震燃烧的方案,对0.51~1.29余气系数条件下的旋转爆震燃烧过程开展了实验研究。实验研究结果表明:与液体煤油相比,煤油富燃燃气能够在更低氧含量的富氧空气中实现旋转爆震波的稳定传播。氧气质量含量为29%,余气系数为0.74时,煤油富燃燃气与富氧空气形成的旋转爆震波的传播速度均值为926.3m/s。贫氧条件下,随着空气流量增大,旋转爆震波的传播速度先减小后增大,其最小值为氧浓度降低与空气流量增大对爆震波传播速度影响的平衡点。本实验范围内,该平衡点对应的氧气质量含量和余气系数分别为35%与0.92。  相似文献   

15.
为了研究进气温度和当量比对脉冲爆轰发动机工作过程的影响,建立了带简单化学反应的气液两相爆轰欧拉-拉格朗日模型,使用二维时空守恒元与求解元(CE/SE)方法和变步长4阶龙格-库塔法分别求解气液两相爆轰方程.计算结果表明:提高进气温度,能加速液滴雾化、蒸发,缩短燃烧转爆轰距离和时间,但是会降低爆轰波的峰值压力;当量比小于1.1时,增加当量比,能缩短燃烧转爆轰距离和时间,提高爆轰波的峰值压力,加快爆轰波传播速度;当量比大于等于1.1时,增加当量比,能小幅提高爆轰波速传播度和缩短燃烧转爆轰距离和时间,但对爆轰波的峰值压力影响很小.   相似文献   

16.
葛高杨  郭敬涛  靳乐  马虎  夏镇娟  邓利  周长省 《推进技术》2021,42(12):2667-2674
为了快速可靠地评估旋转爆震冲压发动机的总体性能,针对冲压模态下的旋转爆震发动机建立了性能分析模型。模型以飞行条件和冲压发动机关键几何参数作为输入参数,结合气体动力学和C-J爆震理论,获得旋转爆震燃烧室的流场参数分布以及发动机喷管排气参数,输出发动机推力以及燃料比冲,建立了基于连续旋转爆震的冲压发动机性能评估方法。模型参与反应的燃料和氧化剂分别为煤油以及空气,主要研究了燃料温度、喷管喉部面积、燃烧室环面面积、反应物当量比、飞行马赫数以及飞行高度对发动机燃料比冲、推力的影响趋势。研究结果表明,控制其它变量不变,发动机推力与燃料比冲随燃料温度上升而提高;随喷管喉部面积、燃烧室环面面积减小而增大;随飞行高度增加而降低;燃料比冲随当量比、马赫数增大而减小,而推力随当量比、马赫数增大而增大。在高度为25 km、马赫数为4、当量比为0.6的工况下,发动机燃料比冲可达到1 740 s。分析结果表明,模型计算方法可靠,可快速计算出旋转爆震冲压发动机的推力性能,为旋转爆震冲压发动机的设计提供可靠参考。  相似文献   

17.
为了研究空气喷注环缝宽度对两相旋转爆轰波压力与频率特性的影响,通过改变环缝宽度与当量比开展了大量实验研究。旋转爆轰发动机环形燃烧室外径、内径以及长度分别为204mm、166mm和155mm。汽油和高温空气采用高压雾化喷嘴与环缝对撞喷注的方式进行混合,以此提高推进剂的掺混效果与活性,发动机采用预爆轰管作为点火装置。实验通过燃烧室内测得的高频动态压力信号,对两相旋转爆轰波的传播稳定性、压力特性以及频率特性进行了详细分析。实验结果表明:在不同环缝宽度下均实现了高总温空气与汽油的两相旋转爆轰。当环缝宽度为3mm和4mm,旋转爆轰波平均峰值压力与传播频率均随着当量比增大而增大;增加环缝宽度至6mm,爆轰波传播稳定性变差,平均峰值压力与传播频率随当量比先增大后减小。当环缝宽度为4mm,获得的旋转爆轰波平均峰值压力最高,压力脉动强度最小,爆轰波传播稳定性最强。在一定工况范围内,增加当量比可有效降低爆轰波峰值压力脉动强度。此外,随着空气环缝宽度的增加,爆轰波传播频率整体降低。当环缝宽度为3mm,当量比为1.19时,爆轰波以单波模态在环形燃烧室内连续旋转传播,平均传播速度约为1176.6m/s,爆轰波传播速度存在严重亏损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号