首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
压气机叶栅叶顶间隙流的动力学模态分解   总被引:2,自引:1,他引:1       下载免费PDF全文
王建明  王涵  桂琳 《推进技术》2018,39(3):520-527
为了研究低速孤立压气机叶栅叶顶间隙流的非定常运动型态,采用大涡模拟(LES)技术对流场进行数值模拟,并运用动力学模态分解(DMD)技术对x/c=1.0677弦长处S3截面叶顶二次流速度场进行模态分析。结果表明:动力学模态分解(DMD)能够得到速度场的定常模态和不同频率下的主要振荡特征。同时揭示了频率为f1=824.9Hz的一阶振荡主要表现为泄漏涡的低频周期性生成与退化;而频率为f2=9807.2Hz的二阶振荡是由叶顶移动端壁形成剪切层内的不稳定造成的,主要表现为泄漏涡的振荡与分裂。  相似文献   

2.
基于剪切应力输运湍流模型的SST-DDES混合方法对NACA0012翼型大迎角分离流动进行非定常数值模拟,采用动力学模态分解(Dynamic Mode Decomposition,DMD)数学工具对失速初始状态、浅失速状态以及深失速状态的流场进行稳定性分析。结果表明:DMD方法准确地提取了翼型大迎角流动中的主频和高阶倍频及对应的流场模态结构;与FFT分析结果相比,频率最大差异小于0.16%;且发现两者提取的频率在流动中的主导作用顺序也一致。通过特征值对相应的模态进行稳定性分析,所有模态的放大率均非常小,所有模态处于弱发散、弱收敛或稳定极限环状态。DMD提取的一阶模态主要表现为分离涡演化过程中最主要的静止分离涡结构,前三阶低频对应的模态涡结构与流动中以此频率进行演化的涡结构比较一致,更高阶的倍频主要表现为尾涡和尾迹区的涡结构。且发现不同模态系数之间存在相位差,说明分离涡流动中不同频率对应的涡结构运动不同步。  相似文献   

3.
为了对防除冰问题进行精细化模拟和对带冰机翼进行全局稳定性分析,采用改进延迟脱体涡模拟(improve delayed detached-eddy simulation, IDDES)方法,对GLC305翼型带944号冰形表面复杂流动进行了非定常模拟。基于此,分别采用本征正交分解方法(proper orthogonal decomposition, POD)和动态模态分解方法(dynamic mode decomposition,DMD)对模拟结果进行模态分析,以提取影响流动分离的主要模态,最后对流场进行重构。结果表明,IDDES方法准确预测了翼型升力系数和冰角下游的压力平台等特征,清晰地捕捉了冰角后剪切层失稳脱落形成的涡结构及在向下游流动中涡结构合并、破碎的发展过程。基于IDDES获得的非定常数据,POD方法识别出角冰诱导剪切层中的两种典型脉动频率,且在前几阶主要模态中均存在,意味着这两种脉动模式对流动的主导作用。另外,DMD方法得到的每个模态对应单一的频率和放大率,部分模态处于发散状态,这是导致流动不稳定发生的主要机制。研究还发现POD和DMD主要模态的能量序列均从翼型中部开始,这与...  相似文献   

4.
采用DMD方法研究叶栅不同攻角的拟序结构   总被引:1,自引:1,他引:0  
为分析平面叶栅分离流非定常拟序流动特征,对三个不同攻角下的叶栅进行了单通道的大涡模拟仿真,并采用动力模态分解(DMD)三个工况的流场结构进行了分析。DMD方法对包含复杂时空信息的叶栅分离流流场进行了解耦,剥离出了反映流场主要动力信息的模态,获得了其频率和与之对应的空间结构。并且通过DMD方法,将原本需要研究大量不同时刻的流场,转移到仅需要对少量模态的研究即可,实现了保留主要动力特征的低维近似。通过DMD分析表明:气流经过叶片前缘产生流动分离,形成不稳定的剪切涡结构,它和尾迹区脱落涡相互耦合,并形成新的拟序结构。随着攻角的增大,前缘剪切涡及其与尾迹涡的耦合也同时增强,流场变得更加复杂。   相似文献   

5.
引入DMD方法研究有/无控气流分离的动态结构   总被引:2,自引:0,他引:2  
为分析非定常流动控制技术抑制分离流的机理,对弯曲扩压通道的试验模型进行了数值模拟,针对扩压通道在无控和采用最佳射流频率状态下的计算结果引入了动力模态分解(DMD)技术进行分析。通过DMD技术能够将包含时空信息的扩压通道复杂流场进行分解,捕获流场包含的动力信息和对应的拟序流动结构。将无控和有控流场分解的结果进行对比分析后表明:采用有效激励措施时,和脱落涡频率一致的涡系对流场的影响更加突显,流场整体上表现得更加有序;非定常控制抑制了一部分涡的增长,使得各模态整体上更加稳定;而有控流场占主导地位的涡系结构相比无控流场较为有序,且对主流区未形成明显的直接影响。  相似文献   

6.
为论证动力学模态分解(DMD)方法对流场主要特征的快速识别能力,分别计算分析了有、无激波产生的2组翼型中相同工况下的翼型振荡运动。在S-A方程湍流模型下,得出了翼型表面的流场压力数据,并完成DMD分解。在DMD模态云图及特征频率中,可以识别出翼型周围流场的流动结构与主要的动力学信息。结果表明,有、无激波算例中分别捕获了翼型的非定常流动特征,前4阶DMD模态反映了一系列的流场特征信息:一阶模态可以基本匹配均匀流场的形态;二阶DMD模态的频率则与翼型预设的振荡频率恰好匹配,剩余的三、四阶模态则正好反映了这一振荡频率的倍频。在有激波流场算例中,后3阶模态均准确地捕捉到了激波间断处;无激波的流场算例中,后3阶模态则可以有效地捕捉到大压差区域。  相似文献   

7.
高传强  张伟伟 《航空学报》2019,40(7):122597-122597
绕机翼的跨声速抖振流动是典型的复杂不稳定流动,对其非定常特性及失稳机制的研究具有重要的工程和学术价值。通过非定常雷诺平均Navier-Stokes(URANS)仿真方法和动模态分解(DMD)分析手段,研究了CRM(Common Research Model)等典型机翼的跨声速抖振流动特性及其主要失稳模态。数值仿真结果表明机翼的跨声速抖振表现为多失稳模式下的宽频特性。除了激波的弦向失稳,还会伴随发生激波的展向失稳,它们都表现为低频特性。翼梢处的高频响应可能是由激波诱导的低频失稳与翼尖涡相互耦合形成。DMD分析结果显示机翼展长和后掠因素诱导了激波展向失稳模态。本研究对抖振流动的物理建模、控制及理解相关的气动弹性现象具有指导意义。  相似文献   

8.
采用具有7阶精度的weighted essentially non-oscillatory(WENO)差分格式,直接求解可压缩二维非定常N-S方程组,研究了NACA0012翼型平面叶栅低雷诺数流动的特征.直接模拟及与文献对比的结果表明:叶栅尾缘涡脱落的形成过程与圆柱绕流涡脱落的形成过程非常相似.平面叶栅尾迹区的2阶统计量与孤立翼型尾迹区的2阶统计量具有相同的分布特征,但前者的强度显著大于后者.周期性的涡脱落不仅在上下翼面形成非定常分离,也使得尾迹区某点的总压发生准周期性的变化.随着栅距的减小,翼型上的平均分离位置向前缘移动;尾迹区某点的总压变化频率及其幅值均显著地增加;而且栅距越小,速度脉动2阶统计量反而越大.   相似文献   

9.
失速时的流动分离现象对风力机叶片的气动性能有重要影响,S809作为典型水平轴风力机翼型,在临界失速攻角下气动性能会大幅降低。基于流动特征提取的非定常流场降阶模型(reduced-order model, ROM)是进一步深入了解非定常流动的重要手段。本文通过计算流体力学方法得到轻、深失速攻角下翼型的流动特征,对时变速度场进行本征正交分解(proper orthogonal decomposition, POD)和动态模态分解(dynamic mode decomposition, DMD)分析,得到轻、深失速下翼型的非定常流场信息(能量占比、模态频率等)。通过两种方法的对比,结果表明,POD和DMD方法能够准确捕捉流动过程中的非定常结构和升力主频相同的典型模态,但是POD方法由于基于能量特征,在捕捉模态时会忽略与升力主频相近但能量较小的流动结构,而基于频率特征的DMD方法能够准确获得场的演化信息(增长率、频率等)。本文研究有利于针对主频结构发展相应的流动控制方法,从而改善翼型流场情况,提高气动性能。  相似文献   

10.
基于DMD方法的超声速进气道喘振特性分析   总被引:1,自引:4,他引:1  
采用非定常数值仿真方法对典型超声速进气道的喘振现象进行了研究,并引入动力模态分解(DMD)方法对小喘和大喘流动特性进行了分析,获取了小喘及大喘的流场振荡特征,其中DMD得到的1阶模态反映了时均流场特征、2阶模态反映了主频振荡流场特性。在此基础上,针对小喘与大喘的相互关系进行了研究,结果表明:进气道内小喘流动包含大喘的流场振荡特性,小喘状态是进气道由不喘到大喘状态的中间状态,由小喘向大喘演化过程中,进气道内一些流动特征逐渐减弱并趋于稳定收敛,大喘的流场结构整体上比小喘状态更为稳定。   相似文献   

11.
采用大涡模拟(large eddy simulation,LES)方法计算动叶尾迹对静叶干扰的流场信息。利用涡量分布揭示动叶尾迹在静叶通道内的演化过程,利用压力梯度识别激波结构及波振源,运用动力学模态分解(dynamic mode decomposition,DMD)方法对静叶通道内流场的时空结构进行模态分解。结果表明:流场中存在3处波振源,分别位于动叶尾缘、静叶前缘和静叶尾缘处;发现静叶通道内流场的频谱具有多峰值现象,模态分解的第1阶流动代表动叶尾迹在通道内随时间迁移,对应频率为动叶通过频率(blade passing frequency,BPF)是通道内旋涡非定常波动的主导频率;第2阶流动是动叶通过频率的2倍频流动,旋涡的空间尺度为1阶模态的1/2,为更小尺度的扰动。   相似文献   

12.
虚拟体法数值模拟双圆柱强迫振荡系统   总被引:1,自引:1,他引:0  
用虚拟体方法研究了均匀流及尾流中圆柱横向振荡的流动特征.单圆柱结果与相关试验吻合,得到了"锁定"区域,发现涡量跳跃现象.对小间距双圆柱的数值模拟发现,在"锁定"区域附近随激励频率的增加流场特征会出现若干显著的变化,包括涡量的跳跃,涡模态的改变,正负涡量带的形成和消失.在大间距情况下发现下游圆柱的振荡对上游尾涡脱落没有明显的影响,下游圆柱尾流场没有发现"锁定"现象.  相似文献   

13.
利用非定常RNGk-ε模型对三种典型的钝体绕流问题进行了研究,这三种流动分别为:方柱绕流、圆柱绕流和绕立方柱流动。研究表明了采用非定常雷诺平均方法可以研究钝体绕流的非定常流动,但所获得的结果各不相同。对于分离角固定的方柱绕流和绕立方柱流动,数值模拟结果和实验以及大涡模拟结果吻合较好,对于分离角不固定的圆柱绕流,随着雷诺数的增加,数值模拟结果和实验结果相差越大,分析认为这是由于壁面模型无法准确预测流动中不固定的分离角所致。改进了绕立方柱流动的模拟方法,采用非定常模拟方法后获得的结果要比定常模拟方法得到的结果有了根本改善。  相似文献   

14.
对均匀来流情况下Re数为200的二维单自由度弹性支撑圆柱涡致振动问题进行了数值模拟。采用时空有限元方法求解二维不可压N-S方程,利用新型显示积分方法求解圆柱振动方程,并用弹簧动网格技术实现网格更新。针对低折合阻尼比涡致振动,分析了不同圆柱自振频率下升力系数、阻力系数以及圆柱位移等参数的变化趋势,成功地捕捉了"锁定"、"拍"和"相位转换"等现象。讨论了圆柱脱落尾涡模态随时间的演变,观测到新的2P+2S尾涡模态,当圆柱振动幅值最大时,尾涡在下游不同位置可能出现2S、2P+2S和2P模态。  相似文献   

15.
应用有限体积法求解不可压缩二维N-S方程,对在均匀来流中圆柱-椭圆柱周期性变形运动进行了数值模拟。对于两种典型状态,即雷诺数为40和100,本文描述了圆柱变形运动所引发的非定常流动随时间变化的过程,揭示了变形过程中柱体附近流场的变化主要取决于由壁面压力梯度和壁面的切向运动加速度所产生的壁面涡量流,分析了不同变形频率和不同变形量对升力和阻力、旋涡形成及其运动的影响,并发现了频率锁定现象。  相似文献   

16.
带扰流片的二维翼型非定常计算及分析   总被引:1,自引:1,他引:1  
通过求解二维非定常可压N-S方程,研究了带扰流片的NACA0012翼型绕流问题.首先计算了扰流片固定在三个不同张开角度时的流动,气动力系数变化规律和已有实验数据对比,结论一致.并着重描述了扰流片张开时,背风区涡形成、发展和脱落过程,分析了非定常气动力产生的机理.为了进一步探讨振动扰流片对主翼的影响,采用Chimera重叠网格技术处理多体相对移动问题,分析了振动频率和振动幅度两个因素对时均气动力的影响.  相似文献   

17.
基于CFD和气动声学理论的空腔自激振荡发声机理   总被引:4,自引:0,他引:4  
应用CFD技术和气动声学时域理论(FW-H积分方程),探讨了空腔自激振荡发声机理。腔内噪声计算以空腔流动解为基础,采用了气动声学时域理论,对该理论进行了推导说明,并利用圆柱绕流声学特性验证该方法基本可行。研究获得的空腔自激振荡模态分析结果与Rossiter和Heller等的预测结果基本相同,捕捉到了自激振荡的频域特性;分析表明空腔上方形成的剪切层中的脱落涡与腔后壁相撞,产生的一次声波辐射至腔前壁激发新的脱落涡,新的脱落涡与腔后壁再次相撞产生二次声波形成的流动声学反馈回路是导致空腔自激振荡和噪声产生的主要原因,且腔内声压幅值主要出现在一阶和二阶振荡模态,声音能量主要集中在较低频率区域。  相似文献   

18.
傅珏  杨波  钟芳源 《航空动力学报》2019,34(9):2048-2055
以跨声速轴流压气机转子NASA Rotor 36为对象,研究了叶顶间隙流场的非定常流动特性。在数值模拟结果的基础上,采用本征正交分解(POD)方法获取POD模态和时间系数分布规律,进一步分析了近失速工况下叶顶间隙流场的流动特性。结果表明:在近失速工况下,叶顶间隙流场的主导频率为叶顶泄漏涡频率,约为0.6倍转子通过频率;能量较高的POD模态决定了叶顶泄漏涡的波动频率和幅值,低能量的高阶涡则影响流场的细微结构;同时发现,前5阶POD模态就可以很好地重构流场,这为低阶模型的应用提供了一定的理论指导。   相似文献   

19.
动力学模态分解及其在流体力学中的应用   总被引:2,自引:0,他引:2  
随着计算流体力学和先进流动测试技术的发展,流动的刻画越来越精细,伴随而来的海量流场信息的模态提取与复杂动力学特征的模型化成为当前流体力学的研究热点。动力学模态分解(Dynamic Mode Decomposition,DMD)作为一个全新的时空耦合型动力学建模方法,得到迅速推广。DMD是一种数据驱动的非定常流场模态分析手段,可以准确捕捉各个流动模态的频率及增长特性,并建立流场演化的动力学降阶模型,以重构或预测流场动力学过程。本文针对DMD在流体力学研究的应用问题,重点综述了DMD算法自提出以来的一系列改进以及对不同流动现象的应用,并通过典型测试算例说明DMD的应用过程。在此基础上,讨论了DMD的研究现状及未来发展方向。  相似文献   

20.
基于POD和DMD方法的跨声速抖振模态分析   总被引:2,自引:0,他引:2  
寇家庆  张伟伟  高传强 《航空学报》2016,37(9):2679-2689
跨声速抖振现象是由于非定常跨声速流动中激波的自激振荡而引起的结构强迫振荡,这种现象在跨声速飞行器中普遍存在,对飞机的结构强度和疲劳寿命有不利影响。基于模态分解的分析方法是进一步发展抖振控制手段的有效工具。本文通过两类典型模态分析方法(本征正交分解(POD)和动态模态分解(DMD))对OAT15A翼型的跨声速抖振现象进行分析,通过对模态频率、翼面压力分布、流场重构误差等方面的研究,将两种模态分解方法进行对比。发现基于频率特征的DMD方法能够准确捕捉抖振的临界稳定特征和抖振主频的典型模态,同时能够更准确反映流场变量在激波间断附近随时间的变化过程;而POD方法尽管在流场重构时具有较小的总体误差,但对激波附近压强随时间的变化历程拟合较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号