首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
带盖盘45°预旋系统流动特性的实验   总被引:1,自引:0,他引:1       下载免费PDF全文
对带盖盘45°预旋系统的预旋腔和转静腔内流动特性进行了实验研究,得到了高转速下静盘表面的静压分布、中心面(z/S=0.326)总压分布、流阻系数以及预旋孔排气系数的变化规律。结果表明:流量分配对腔内压力分布影响较小;湍流参数是腔内流动特性的主要影响参数之一;腔内流动结构主要分为转静腔的自由涡结构以及预旋腔的回流区和低压区;流阻系数随湍流参数变大而显著上升;预旋孔排气系数随着进、出口压比增加而增加。   相似文献   

2.
白阳  罗翔  何建 《航空动力学报》2022,37(6):1295-1305
通过计算卷吸流量对传统湍流参数定义进行修正,并验证了修正后的湍流参数对气流流动的控制情况。结果表明:修正后的湍流参数在不同的管氏减涡器进出口位置和入口预旋下均对盘腔内的气流流场和总压系数取得了很好的控制效果。气流总压系数和实际旋流系数均同时受修正湍流参数和入口旋流系数控制。此外,随同转速下的湍流参数增加,气流保持其径向内流状态的能力增强,需要管氏减涡器抑制其周向旋转的区域减少,使得总压系数最小的最优管氏减涡器长度减短。   相似文献   

3.
预旋结构影响带盖盘预旋系统流动的实验   总被引:3,自引:1,他引:2       下载免费PDF全文
为探究预旋结构如何影响盖盘系统内的流动特性,对不同预旋角度和进气位置的带盖盘预旋系统进行实验研究,得到了高转速下静盘表面静压和中心面总压的分布、中心面旋流系数、预旋孔排气系数以及腔内流阻系数。结果表明:预旋角度和进气位置分别影响腔内压力分布大小和分布趋势。随预旋比增加中心面旋流系数整体增加,转静腔内旋流系数与无量纲半径的-2次幂存在线性关系。预旋孔排气系数随预旋孔进出口压比的增加而增加。流阻系数随湍流参数增大而上升,随旋转雷诺数的增加而减小。  相似文献   

4.
叶型预旋喷嘴流动及温降特性实验与计算研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了研究转速、压比、雷诺数对叶型喷嘴流量系数及盖板式预旋系统温降的影响,介绍了在压比1.1~1.5,转速0~10kr/min条件下稳定运行的预旋系统旋转实验台。通过实验测量预旋系统内的温度和压力分布,对比分析了两种叶型预旋喷嘴(叶片式喷嘴和叶孔式预旋喷嘴)的性能差异,并采用数值计算揭示喷嘴流动损失及预旋系统温降机理。结果表明,叶孔式预旋喷嘴与叶片式预旋喷嘴流量系数均随压比的增大而增大;随雷诺数的增大先逐渐增大,当Re2×105,流量系数基本不变。系统温降效率随着压比的增大逐渐增大;压比1.5时,温降随转速增大先增大后减小,存在一个极值。叶孔式预旋喷嘴流量系数与叶片式喷嘴流量系数相差不大,约为0.95;但叶孔式喷嘴可以减小端壁二次流损失和尾迹损失,降低喷嘴出口落后角,提高喷嘴出口旋转比和系统温降效率。压比1.5,转速8.1kr/min时,叶孔式预旋喷嘴系统温降效率比叶片式喷嘴的提高了40%。  相似文献   

5.
反旋进气盘腔内流动与换热的数值模拟   总被引:8,自引:5,他引:3       下载免费PDF全文
应用RNGk-ε湍流模型对围屏上带反旋喷嘴的径向内流旋转涡轮盘腔内的流动与换热进行了数值模拟,揭示了盘腔内的压力损失及冷气流量、旋转雷诺数、湍流参数等因素对盘腔内流动换热的影响.计算结果表明:盘腔内的流动结构主要由湍流参数决定;在某一旋转雷诺数下盘腔内压力损失随冷气流量的增大而呈现S型变化;反旋喷嘴的应用能有效地降低盘腔内的压力损失;转盘附近的努赛尔数随冷气流量及旋转雷诺数的增大而增大.  相似文献   

6.
预旋进气小尺寸涡轮叶片冷却的流场研究   总被引:1,自引:1,他引:0  
为了了解和掌握一种具有直通式冷气预旋进气系统的小型燃气轮机涡轮转子叶片的流场,在旋转雷诺数Reθ=4.66×106和冷却空气的无量纲质量流量Cw=1750时改变预旋角θ的大小,使其在15°~90°变化,通过数值研究得到了预旋角对涡轮盘腔、连管和涡轮叶片内冷却空气的流动以及叶栅通道中燃气的流动的影响。结果表明:(1)预旋角的变化会改变涡轮盘腔、连管和涡轮叶片冷气进口附近局部区域的流场,但是对涡轮叶片内其它区域和叶栅通道中的流动基本没有影响。(2)随着预旋角的增大,涡轮盘腔内预旋进气冷气射流的轴向穿透深度先增大后减小;当θ<45°时冷却空气沿外围屏流向转盘接收孔,而当θ>45°时冷却空气沿内围屏流向转盘接收孔;气流的周向速度随着预旋角的增大而减小。(3)垂直进气时连管内存在多个回流区和很大的涡流,流动损失较大,而采用预旋进气能够减弱或消除这些流动结构,存在最优预旋角θopt,θopt≈45°,此时连管的有效流通面积最大。  相似文献   

7.
为减少径向预旋系统的流动损失,运用数值模拟方法对不同盘腔进气位置的径向预旋系统进行分析,结果表明:随着盘腔进气径向位置的增加,预旋喷嘴出口气流旋流比随之逐渐减小,径向预旋系统的温降系数及总压损失系数均随之逐渐增大。当旋转雷诺数等于7.9×106,盘腔进气位置由低位向高位变化时温降系数最大可增加525%,同时总压损失系数增加3.93%。径向预旋系统内比熵增主要发生在预旋喷嘴和共转腔,约占系统总体比熵增的80%。随着盘腔进气径向位置的增加,径向预旋系统总体比熵增降低,预旋喷嘴比熵增占比逐渐增大,共转腔比熵增占比逐渐减小。  相似文献   

8.
有去旋进气共转盘腔内流动换热数值模拟   总被引:1,自引:1,他引:1  
对左边转盘高位带去旋孔且附有内隔片的共转盘腔内的流动和换热进行了数值模拟.揭示了去旋角、旋转雷诺数、去旋喷嘴进气无量纲流量系数等参数对共转盘腔内的流动结构、压力损失和换热效果的影响.结果表明:盘腔内的总压降随无量纲流量系数的增加呈"S"形变化趋势;旋转雷诺数和冷气无量纲流量系数的增大都能增强转盘表面的换热效果;与预旋转静盘腔相比,去旋进气共转盘腔能使出口气流温度更低,冷却效果更好.  相似文献   

9.
高旋转雷诺数下预旋进气转-静盘腔流动换热特性   总被引:2,自引:3,他引:2  
运用RNGk-ε湍流模型对高旋转雷诺数和预旋进口速度下,静盘外缘预旋进气、转盘外缘轴向出流模型的流动和换热过程进行了三维数值模拟,主要研究了冷气流量Cw、旋转雷诺数Ree等参数对转盘对流换热系数和出流口温度分布的影响,并与垂直进气方式进行了对比.研究表明:预旋进气方式与垂直进气相比可降低涡轮叶片冷气人口总温;冷气流量增大以及旋转雷诺数增大均使得转盘平均换热增强;涡轮叶片入口温度随冷气流量增大而降低,随着旋转雷诺数的增大先升高后降低.  相似文献   

10.
为提高燃气轮机冷气品质,基于简化的燃气轮机盖板式预旋系统,采用数值模拟方法,对比研究了进、出口压比和无量纲质量流量、旋转雷诺数对蒸汽和空气预旋系统温降和流阻特性的影响规律,并以二氧化碳作为对比研究对象,分析了其流动特性存在差异的原因。结果表明:空气的预旋温降性能明显优于蒸汽的;蒸汽和空气的预旋温降性能均随进、出口压力或无量纲质量流量的增大而降低;当旋转雷诺数由3.4×106增至7.1×106时,空气的无量纲总温降逐渐增大,而蒸汽的则先增大后减小;但空气与蒸汽的流阻性能相差不大,其总压损失系数均随无量纲质量流量增加而增大,随旋转雷诺数增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号