首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 472 毫秒
1.
李疏芬  夏幼南 《推进技术》1989,10(1):47-53,75
本文从实验上研究了一系列复合推进剂在燃烧室内点火所产生的燃气对激光、红外、可见光及微波等信号产生的衰减;对实验结果进行了理论分析和解释,找出了复合推进剂中AP粒度、含量、级配比、Al粉粒度、含量及燃烧室压力等诸因素对衰减大小的影响规律;同时也给出了对信号衰减较小的AP粒度级配范围,为复合推进剂无烟化的研究提供了参考依据.  相似文献   

2.
AP/RDX/HTPB复合推进剂燃速特性计算研究   总被引:3,自引:3,他引:3       下载免费PDF全文
张炜  朱慧  刘文元 《推进技术》1997,18(4):75-79
考虑了AP/RDX/HTPB推进剂中两种氧化剂的含量、配比和粒度对推进剂燃面结构及燃速的影响,建立了一个高氯酸铵/硝胺复合推进剂的“双区”稳态燃烧模型。两区所占的面积比由两种氧化剂的数密度之差决定,这样可同时反映这类推进剂中两种氧化剂配比和粒度的影响。计算结果表明,该模型可较好地模拟AP/RDX少烟推进剂的燃速特征。  相似文献   

3.
本文对含铝复合推进剂中影响铝的凝聚-燃烧的重要因素-AP粒度与铝粒度-进行了探讨.结果表明,两者对铝的凝聚-燃烧过程都有很大的影响.仅凝聚程度的大小而言,AP粒度的影响是主要的,而铝粉粒度的影响是第二位的;但对燃烧完全性来说,则需综合考虑  相似文献   

4.
张仁  胡景发  王锐鑫  王凤泰 《推进技术》1988,9(6):48-53,71,72
本文研究了RDX/AP配比对其HTPB复合推进剂爆温(T_v)、燃烧产物中HCl含量、燃速和燃速压力指数的影响.探索了叔丁基二茂铁、铬酸铅等添加剂对RDX/AP丁羟推进剂燃速的催化效果.应用单幅摄影、中止燃烧和扫描电镜等实验技术对其结果作了初步的分析.  相似文献   

5.
贺南昌 《推进技术》1985,6(5):42-48
本文研究了HTPB/AP推进剂中过氯酸铵(AP)含量对丁羟推进剂老化性能的影响。实验是在90℃的空气中进行的,老化性能以推进剂的拉伸性能、邵氏硬度、失重%、燃烧速度等项目为判据。实验结果表明:随着老化时间的增长,推进剂的最大强度增加;最大强度下的伸长率减小;邵氏硬度增加;失重%有缓慢的增多;而燃烧速度少量降低。推进剂中氧化剂AP含量的增多,或多或少有减轻推进剂性能老化变化的趋势,因而对HTPB推进剂老化性能的提高是有益处的。 本文对老化期间HTPB推进剂失重%所显现出来的特殊情况,作了理论上的解释。  相似文献   

6.
本文在原始BDP多火焰燃烧模型的基础上,对多分散的氧化剂颗粒和扩散火焰距离进行了简化计算,对含铝和含催化剂的计算亦进行了简化处理。设计的程序较为简短,能在带FORTRAN语言的各种类型微型机上实行快速运算,计算与实测结果的对比,其精度在10%以内。理论计算还预示:凡能增大AP焰反应速度的燃速催化剂,具有大幅度提高燃速和降低压力指数的效果;选择的氧化剂颗粒级配若D(相当)接近80微米时,能达到提高燃速与降低压力指数的作用。  相似文献   

7.
镁基水反应金属燃料的热分解性能   总被引:1,自引:1,他引:0       下载免费PDF全文
李是良  张炜 《推进技术》2009,30(6):740-744
采用热重-差热分析联用(TG-DTA)、差示扫描量热(DSC)、加压热重(PTG)等热分析方法,研究了镁基水反应金属燃料热分解反应的基本特性及其变化规律。研究发现,燃料热分解过程中先后发生AP分解反应、HTPB分解反应,氩气中不发生Mg的氧化反应;添加催化剂、减小AP粒度、增大氧化剂与粘合剂比例、增大细Mg粉含量等,可以降低燃料中AP的分解温度T,减小表观活化能Ea,增大反应速率常数k;减小AP粒度、增大氧化剂与粘合剂比例可以降低燃料中HTPB的分解温度,减小表观活化能Ea,增大反应速率常数k;随着压强增大,AP与HTPB分解失重速率增大、AP失重百分数增大、燃料热分解凝聚相产物质量百分数减少,压强对AP分解影响较大,对HTPB分解影响较小。  相似文献   

8.
封锋  陈军  宋洪昌  郑亚 《推进技术》2010,31(3):356-360
在一维气相稳态反应流模型的基础上,讨论了细粒度AP对改性双基(CMDB)推进剂燃速的影响,引入工艺粒度d*s,修正了AP对燃烧表面结构影响因子fAP和分解影响因子gAP,建立了适用于细粒度AP的CMDB推进剂燃速预示模型,该模型可从推进剂化学结构参数出发,定量计算AP-Al-CMDB推进剂的燃速。结果表明:在压强9.8~19.6MPa条件下,不同AP粒度和含量下的燃速计算结果和实验结果吻合较好,大部分误差在5.0%,检验了模型的可靠性,对推进剂配方研制具有较好的指导意义。  相似文献   

9.
王荣祥 《推进技术》1992,13(5):78-84
就“织女一号”固体火箭发动机装药工艺中氧化剂粒度级配,混合工艺和浇注工艺进行了探讨,采用几何学方法推导出氧化剂粒度直径之间的相互关系,对粒度级配有一定的指导作用,从而提高了装药密度和流动性能。  相似文献   

10.
含铝复合固体推进剂的燃烧模拟计算   总被引:5,自引:0,他引:5  
赵银  田德佘  江瑜 《航空动力学报》1987,2(2):147-152,188-189
本文以我们提出的AP/HTPB推进剂的稳态燃烧模型为基础,对多级配AP/Al/HTPB推进剂的燃速和压力指数进行了模拟计算,并对铝粒径、铝含量对燃速和压力指数的作用规律及其机理作了说明。计算结果和实验符合得很好,相对误差小于10%的达90%以上,能满足定量予估的要求。   相似文献   

11.
夏幼南  李疏芬 《航空动力学报》1988,3(3):247-251,284
本文提出了描述复合火箭推进剂(HTPB/Ap/AL)体系中铝粉凝聚的新模型——链反应模型。定义并推导出了铝粉的凝聚速率、平均凝聚程度及铝凝滴直径大小分布函数的具体表达式,从中可明显看到推进剂燃速、铝粉含量与铝粉粒度,Ap粒度及燃烧室压力等因素对铝粉凝聚程度的影响趋势,并且与现有的实验结果完全相符。  相似文献   

12.
固体推进剂铝团聚模型   总被引:1,自引:0,他引:1       下载免费PDF全文
敖文  刘佩进 《航空动力学报》2017,32(5):1224-1233
综述了固体推进剂铝团聚研究进展,对现有研究中存在的局限性进行了讨论,并分析了未来团聚模型的趋势.铝团聚物理过程可抽象为堆积、聚集和团聚3个阶段.现有团聚模型可分为5类,分别是经验模型、口袋模型、物理模型、随机装填模型和凝相边界层模型.目前缺乏高精度、宽适用性的模型来准确预测铝的团聚过程.团聚模型未来发展的趋势应具备能够预测团聚物粒度分布和计算量小两大优势.由于能描述团聚过程的本质,物理模型具有很好的研究前景.开展了5MPa下含铝推进剂燃烧实验,采用高速显微拍摄技术获得推进剂燃面处铝颗粒的团聚直径,与Hermsen模型和Salita模型预测数据进行了比较,对于燃速分别为5.1mm/s和8.0mm/s的推进剂,Salita模型对于团聚直径的预示误差分别为8.7%和9.6%,而Hermsen模型对于高燃速推进剂的预示误差为19.2%.总体看来,Salita模型预示精度更为合理.   相似文献   

13.
陈景蕙  利风祥  季成伍  程留生 《推进技术》1989,10(2):44-47,74,75
用透明窗发动机及高速摄影装置研究过氯酸铵粒度对丁羟复合固体推进剂侵蚀燃烧的影响,得出了不同过氯酸铵粒度推进剂的侵蚀比与气流速度及压力的关系式.结果表明,复合推进剂中过氯酸铵粒度越大,其燃速对气流速度和压力越敏感,即侵蚀越严重;过氯酸铵粒度越大,其侵蚀界限速度越小,即其越易发生侵蚀;每种过氯酸铵粒度的推进剂,其侵蚀界限速度均随压力的增大而减小.  相似文献   

14.
硝酸酯增塑聚醚高能推进剂高压燃烧性能研究   总被引:5,自引:1,他引:5       下载免费PDF全文
王芳  张小平  胡润芝  汪越 《推进技术》2004,25(5):469-472
实验研究了硝酸酯增塑聚醚高能推进剂高压燃烧性能。通过对PET,PEG和叠氮聚醚三种粘合剂;NG,TEGDN及BTTN三种增塑剂;AP,RDX,Al粉的含量和粒度进行研究,发现推进剂在9~25MPa压强范围内燃速 压强曲线存在拐点,得出了推进剂各主要组成及固体组分的含量和粒度变化时推进剂高压燃烧性能的变化规律:分别以PET,PEG和叠氮聚醚为粘合剂时,推进剂燃速依次升高;含不同增塑剂的推进剂的燃速随增塑剂中硝酸酯基含量的增加而增加;AP含量增加同时RDX含量减小,燃速增大并且压强指数降低;AP粒度减小时,燃速增大,并且超细AP可大幅度增加燃速;Al粒度减小时,燃速先减小后增大,致使推进剂压强指数升高。  相似文献   

15.
加速度对含铝复合推进剂瞬时燃速的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了加速度向量对含铝复合推进剂瞬时燃速的影响.其中包括加速度大小和方向对推进剂瞬时燃速增加率的影响和在同一加速度条件下铝粉粒径、铝粉含量和铝粉形状对瞬时燃速增加率的影响.此外,还对研究结果进行了分析和讨论.  相似文献   

16.
《中国航空学报》2023,36(5):66-77
The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hindering the improvement of specific impulse. This study aims to explore the characteristics of aluminum combustion efficiency and its influencing factors by experiments and numerical simulations, providing a guideline for engine performance improvement. As an input of simulation, the initial agglomerate size was measured by a high pressure system. Meanwhile, the size distribution of the particles in plume was measured by ground firing test to validate the numerical model. Then, a two-phase flow model coupling combustion of micro aluminum particle was developed, by which the detailed effects of particle size, detaching position and nozzle convergent section structure on aluminum combustion efficiency were explored. The results suggest that the average combustion temperature in the chamber drops with increasing initial particle size, while the maximum temperature increases slightly. In the tested motors, the aluminum particle burns completely as its diameter is smaller than 50 μm, and beyond 50 μm the combustion efficiency decreases obviously with the increase of initial size. As the diameter approaches to 75 μm, the combustion efficiency becomes more sensitive to particle size. The combustion efficiency of aluminum particle escaping from end-burning surfaces is significantly higher than that from internal burning surface, where the particle combustion efficiency decreases during approaching the convergent section. Furthermore, the combustion efficiency decreases slightly with increasing nozzle convergent section angle. And theoretically it is feasible to improve combustion efficiency of aluminum particles by designing the convergent profile of nozzle.  相似文献   

17.
氧化剂含量和粒度对NEPE推进剂燃速影响的模型化   总被引:2,自引:0,他引:2       下载免费PDF全文
以高能固体推进剂热分解特性和燃烧模型的研究成果为基础,建立了由化学结构参数计算NEPE推进剂的燃速和压强指数的公式,计算了氧化剂组分含量和粒度对燃烧性能的影响。经验证,计算结果与实测燃速值的偏差全部在±20%以内,其中80%的偏差在±10%以内。这说明所建立的模型基本合理,编制的NEPE类推进剂燃速计算程序基本可行。  相似文献   

18.
AP/HTPB推进剂凝聚相反应对燃速的影响   总被引:1,自引:0,他引:1  
张炜  张仁 《航空动力学报》1991,6(2):115-117,190
W.G.Schmidt[1]和K.Kishore等人[2、3]从推进剂实际燃烧过程发生在气相,而推进剂组分相对又不挥发的观点出发,得出在固相中必定要先发生一系列产生气态产物的凝聚相反应的结论。由于气相反应比凝聚相反应快得多,因而得出凝聚相反应是推进剂燃烧过程的主要控制步骤。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号