首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
姜培学 《推进技术》1999,20(4):17-21
对液体火箭发动机推力室发汗冷却传热过程的二维局部非热平衡模型进行了数值计算,计算吸要用了正交曲线坐标系(贴体坐标)并计及冷却剂(氢)的热物性参数随温度和压力的剧列变化及固体壁沿轴向的导热,结果表明,推力室多孔壁面中靠近燃烧室的部分温度梯度很大,固体骨架与冷却剂的温度差异在推力室内壁面上最大,推力室多孔壁面材料导热系数的提高有利于降低壁面温度及温度梯度;随着冷却剂流量的增大,推力室臂吉的最高温度明显  相似文献   

2.
层板推力室发汗冷却壁温特性的初步研究   总被引:1,自引:1,他引:0  
对液体火箭发动机发汗冷却层板推力室的壁温特性进行了初步研究,通过建立一维固液耦合温差模型,利用有限体积法,计算得到沿推力室径向层板固体和冷却剂的温度分布,并对影响壁温特性的各种因素进行了计算分析,包括冷却剂流量、层板导热系数和冷却通道尺寸等.结果表明:冷却剂流量是控制层板结构温度的重要参数;层板应该采用一种导热系数适中的材料,过大或过小导热系数的材料都不利于推力室的整体性能;较大的冷却通道宽高比有利于层板向冷却剂导热;冷却通道内的换热效率与冷却剂流量和层板导热系数有关.   相似文献   

3.
针对液体火箭发动机推力室的发汗冷却传热过程建立了数理模型。模型中考虑了冷却剂与结构材料之间存在温差、并进行对流换热,即采用了局部非热平衡模型。同时,模型中还计及了冷却剂(氢)的热物性参数随温度和压力的剧烈变化及固体壁沿轴向的导热过程。  相似文献   

4.
对于采用烧结多孔结构作为发汗冷却壁面的喷管,为最大限度的减少冷却剂流量,提出了对多孔介质壁面沿轴向进行分段的发汗冷却结构.通过采用Fluent软件对分4段结构的多孔壁面推力室发汗冷却进行数值模拟并且与不分段的发汗冷却喷管比较发现,分4段的结构在满足室壁温冷却要求的前提下可将冷却剂与主气流量百分比从28.3%降至12.6%,这表明烧结多孔结构分段设计是减少喷管发汗冷却剂流量的有效手段.   相似文献   

5.
应用湍流模型对液体推进剂火箭发动机再生冷却推力室通道的流动与传热进行了三维数值模拟,冷却工质为氢气,其密度、导热系数、动力粘度随着温度和压力而变化,冷却剂比热容及金属固体物性随着温度而变化。计算采用标准k-ε双方程湍流模型及气-固耦合算法。结果表明:推力室燃气侧壁面的温度和热流密度的最高点均发生在喉部附近,喉部横截面固体区域最大温度梯度靠近燃气,喉部附近氢气在垂直主流方向的截面上产生了二次流。气固耦合面最大热流密度及最大对流换热系数同样位于推力室喉部附近。   相似文献   

6.
针对典型的层板发汗冷却结构,提出了利用一个推力室的实验数据来计算另一推力室所需发汗流强的方法。在一种发动机推力室壁面发汗冷却实验数据测出以后,对同一发动机或另一发动机推力室壁采用不同的冷却剂、不同的壁面材料时的受热壁面工作温度与发汗流强的关系,由迭代计算完成。作为分析实例,利用氦气发汗冷却的试验数据对氢气发汗冷却流强进行了计算,其结果得到了实验的验证。  相似文献   

7.
通道深宽比对液体火箭发动机推力室再生冷却的影响   总被引:2,自引:1,他引:1  
应用湍流模型对液体推进剂火箭发动机再生冷却推力室通道的流动与传热进行了三维数值模拟, 冷却工质为氢气, 其密度、导热系数、动力粘度随着温度和压力而变化, 冷却剂比热容及金属固体物性随着温度而变化.计算采用标准k-ε两方程湍流模型及气-固耦合算法.保持再生冷却通道个数及冷却工质进口流量不变, 通过改变通道肋壁厚度来改变冷却通道深宽比, 研究不同深宽比对推力室壁面再生冷却效果的影响规律.计算结果表明:增加通道深宽比对推力室壁面能够起到强化传热的作用, 但同时也增加了冷却通道的进出口压差.这是由于冷却工质流速的增高, 从而提高了推力室传热系数.随着深宽比不断增加, 推力室再生冷却效果趋于饱和, 而冷却工质进出口压降则不断上升.   相似文献   

8.
为了实现航空航天等领域高温大热流燃烧装置的有效冷却,研究了不同材料和工艺制成的发汗冷却结构在高温高热流密度下,氢的发汗冷却性能。模拟高压推力室的结构特点和高热流设计发汗冷却试验件,用电弧加热主流空气模拟高温燃气、以氢气为发汗冷却剂对多孔陶瓷、烧结多孔不锈钢和多孔层板材料进行了33次172 s热试验研究。试验的材料设计孔隙率为10%~40%,燃烧室压力为2.7~8.4 MPa,主流燃气温度约为3 600 K,主流空气流量为220~1 490 g/s,冷却氢气流量为9.6~57 g/s,注入率为0.005~0.029。试验结果表明:当冷却剂氢注入率为1%时,主流与多孔陶瓷材料壁面和粉末冶金多孔结构壁面之间的换热分别减少了30%和70%以上;当注入率为3%时,主流与光刻多孔层间结构壁面之间的换热也能降低60%。证明氢发汗冷却可以有效减小壁面与燃气之间的对流热流。最后还总结得出了常温氢气对高压大热流环境进行发汗冷却的性能关联式。   相似文献   

9.
膨胀循环推力室再生冷却换热的数值模拟   总被引:1,自引:0,他引:1  
韩非  刘宇 《航空动力学报》2007,22(11):1939-1946
为了解液体火箭发动机膨胀循环推力室再生冷却换热特性,采用数值模拟方法,研究了冷却剂流动方式、推力室圆柱段长度、圆柱段室壁加肋和气壁面粗糙度等因素对冷却通道压降、冷却剂温升、壁面热流密度和温度分布等换热特性的影响.计算过程中采用k-ε双方程湍流模型.计算结果表明:采取顺流冷却要比逆流冷却的冷却通道压降低,但同时冷却剂温升也低;对于室壁加肋结构,在肋个数相同而只改变肋高度的情况下,总换热量正比于总换热面积.   相似文献   

10.
韩非  刘宇 《航空动力学报》2006,21(6):1116-1122
为了解液体火箭发动机膨胀循环推力室再生冷却换热特性,对某一参考发动机推力室和另外两种面积比的膨胀循环推力室建立三维计算模型,采用数值模拟的方法,考察冷却剂的温升、冷却通道压降以及推力室内壁面温度和热流密度的分布情况.重点比较了不同燃烧室圆柱段长度、冷却剂不同流动方式以及不同面积比对以上结果的影响.计算过程中采用二阶迎风格式离散控制方程.计算结果表明:采用逆流冷却时,通过加长推力室圆柱段长度使推力室受热面积增加70%后,冷却剂温升提高了一倍左右;对膨胀循环推力室进行再生冷却时,采用顺流冷却要比逆流冷却的冷却通道压降低,但同时冷却剂温升也较低,并且对喉部壁面的冷却效果较差.  相似文献   

11.
一次调节通道流阻特性的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
杨卫华  程惠尔  蔡岸 《推进技术》2003,24(2):115-117
为了研究冷却剂在层板发汗冷却推力室一次调节通道中的流动特性,引入了粗糙粘度μR的概念及其计算式,用有效粘度μ1,eff代替分子粘度μ,导出了冷却剂在一次调节通道中层流流动的N—S方程并对其进行了数值求解。计算结果表明,利用μ1,eff=μR μ代数模型计算得到的流动结果与试验数据吻合较好,说明冷却剂在Dh≈0.16mm--18mm的一次调节通道中层流流动时,可不计微小尺度的效应,但应考虑壁面粗糙度对流动的影响。  相似文献   

12.
一种计算再生冷却推力室温度场的方法   总被引:12,自引:5,他引:7  
为了能够快速而准确地得到再生冷却推力室的温度分布,建立了一种计算再生冷却推力室温度场的方法。首先建立了轴对称推力室的一维冷却模型,并使用换热经验公式,得到了推力室壁面在轴线方向上的温度分布;其次建立了推力室的冷却套二维导热模型,使用数值模拟的方法和一维计算的结果,得到了冷却套的温度场。然后使用这种方法研究了气壁材料、气壁厚度和冷却液流量对推力室再生冷却的影响,获得了比较满意的结果。从计算时间和准确性来说,这种方法能够为推力室的优化设计和性能估算提供参考。   相似文献   

13.
综合气膜冷却和发汗冷却的特点,提出一种在气膜孔出口局部覆盖多孔介质层的冷却结构,利用数值模拟的手段对比研究该结构与常规斜圆孔气膜结构的冷却效果,计算考虑了0.61,0.91和1.22三种吹风比,结果表明:由于多孔介质对冷却射流的扩散作用,该结构的壁面冷却效率高于气膜冷却,同时壁面温度梯度得到了有效的抑制,是一种适合于未来燃气轮机叶片的冷却结构.   相似文献   

14.
赵广播  肖雪峰  易珺  周伟星 《推进技术》2018,39(6):1340-1346
发汗冷却相比常规主动冷却方式是冷却效率更高、覆盖性能更好的热防护技术。为了研究发汗冷却中的添质流动现象,通过带有红外热成像技术的发汗冷却实验平台,在雷诺数1.35×105和总温373K的来流条件下对金属颗粒烧结多孔材料的发汗冷却效果进行了研究,得到了在不同注入率条件下多孔壁面的温度分布,结果显示平均冷却效率与注入率之间近似呈线性关系,当氮气注入率为33.5%时平均冷却效率接近0.45。通过对比单温度方程的局部热平衡模型和双温度方程的局部非热平衡模型的模拟结果,显示局部非热平衡模型能正确反映发汗冷却过程中的换热过程,模拟结果和实验数据具有较高吻合度。模拟结果表明:多孔壁面边界层随注入率的增大而增厚,边界层增厚是发汗冷却具有较高冷却效率的原因之一。  相似文献   

15.
轴对称喷管与圆转方喷管冷却换热特性的比较   总被引:2,自引:2,他引:0  
韩非  刘宇 《航空动力学报》2007,22(11):1947-1953
为了解和比较轴对称喷管与圆转方喷管不同的再生冷却换热特性,分别对轴对称喷管(推力室)与圆转方喷管(推力室)建立计算模型,通过数值模拟的方法重点研究和比较了轴对称喷管与圆转方喷管的流场、壁面热流密度和温度分布、冷却剂温升和冷却通道压降等换热特性.计算结果表明:圆转方喷管由于型面不连续,在转方位置后壁面出现了温度和热流密度的峰值,从而导致沿周向壁面温度和热流密度的分布也不均匀.   相似文献   

16.
液体火箭发动机推力室冷却通道传热优化计算   总被引:4,自引:2,他引:4       下载免费PDF全文
采用标准K-ε两方程湍流模型对液体火箭发动机推力室再生冷却通道三维湍流流动与传热过程进行了数值预测,冷却工质为氢气,其密度、导热系数、动力粘度随着温度和压力而变化,通过两种优化方案来改变推力室冷却通道的深宽比。方案一为保持冷却通道的深度及肋宽不变,通过改变推力室壁面通道个数来改变通道的深宽比,方案二为保持通道数目不变,通过增加或降低通道高度来改变通道的深宽比。以此计算在不同通道深宽比下推力室壁面的传热特性,并进行了优化分析。计算结果表明:存在着一个最佳冷却通道个数,使得推力室壁面再生冷却效果达到最佳;在相同质量流量下,降低通道高度能够强化推力室传热,但同时增加了进出口压差。  相似文献   

17.
牛禄  程惠尔 《推进技术》2001,22(4):290-294
提出液体火箭发动机层板推力室再生冷却通道传热过程的数理模型。采用通用形式控制方程处理冷却剂紊流换热和通道材料导热的共轭传热问题,计算采用LVEL紊流模型,并考虑冷却剂(氢)的热物性参数随温度和压力的变化及层板材料热物性随温度的变化。结果表明,采用大高宽比、小气壁厚度的通道设计,可显著提高再生冷却能力,降低室壁温度和温差。采用对流换热系数和热物性为常数的简化处理会引起很大误差。  相似文献   

18.
推力室喉部层板发汗冷却段的结构设计分析   总被引:2,自引:1,他引:2       下载免费PDF全文
根据层板单元的热分析结果和层板发汗冷却推力室固有的结构特点,提出这种先进发动机冷却方案的设计原理和结构参数的计算公式,结合一台50kN发动机推力室喉部改再生冷却为发汗冷却的改形设计,分析其层板发汗冷却段喉部的设计方法和主要结构尺寸的计算结果。还比较了全再生冷却和发汗冷却两种冷却方式下发动机推力室的温度、热流密度和重量。对先进层板发汗冷却推力室的结构设计提供了参考。  相似文献   

19.
对大推力液体火箭发动机再生冷却推力室内部燃气、室壁和再生冷却剂进行了耦合传热数值计算.采用二维轴对称N-S方程描述推力室内部燃气的湍流流动与传热,对冷却剂流动采用简化的一维模型,通过室壁的偶合传热采用一维传热模型.N-S方程的求解采用贴体坐标系下的有限容积法,速度和压强的耦合采用可压缩的SIMPLE算法.湍流的模拟采用可压缩的标准κ-ε模型,辐射传热采用热流模型计算.研究表明,本文方法可较好地模拟燃气的二维流动,同时能快速计算壁面热流密度、壁温和冷却套温升,计算结果对大推力发动机推力室的设计具有一定的指导意义.  相似文献   

20.
燃气非平衡流再生冷却流动传热数值模拟   总被引:9,自引:6,他引:3  
康玉东  孙冰 《推进技术》2011,32(1):119-124
为准确预测液体火箭发动机推力室身部再生冷却换热状况,采用数值模拟方法,对燃气、推力室壁和超临界气氢进行三维流动和换热耦合计算。采用6组分9步反应动力学模型计算燃气的非平衡化学反应,采用DO模型计算燃气辐射换热,考虑超临界气氢物性随温度和压力的变化。获得了室壁温度场、燃气及冷却剂流场。结果表明,Redlich-Kwong方程、Peng-Robinson方程、Lucas法、TRAPP法能分别准确计算超临界氢的密度、定压比热容、粘度、导热系数,采用燃气非平衡流计算所得流场值更符合实际情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号