首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
 测试了Ti-10V-2Fe-3Al合金在β区850℃~950℃、ε=5×10~(-3)~10s~(-1)条件下的压缩真应力-真应变曲线。研究了变形组织。结果表明:在850℃~950℃、ε=10~(-1)~10s~(-1)范围内变形,动态回复是主要软化机制,其σ-ε曲线为动态回复型,变形后的组织为拉长晶粒。对所得的σ-ε曲线进行了数学分析,得出了流变应力模型。  相似文献   

2.
为了探究冷轧态5B70合金超塑性行为,利用高温拉伸试验对冷轧板材在不同参数下的变形规律进行研究。结果表明:在初始应变速率为5×10~(-4)~1×10~(-2) s~(-1)和拉伸温度为450~500℃范围内,冷轧5B70合金板材具有良好的超塑性;500℃为合金的最佳超塑性变形温度,1×10~(-3) s~(-1)为最佳初始应变速率,在最佳超塑性条件下合金的最大延伸率达到了670%,应变速率敏感性指数为0.43;在超塑性变形过程中,由于动态再结晶作用,原始纤维组织逐渐转变为等轴晶,并且晶粒明显细化;合金的超塑性变形是再结晶辅助下晶界滑移为主的变形机理,表现出了明显的晶间断裂特征。  相似文献   

3.
等温锻造FGH96合金超塑性研究   总被引:4,自引:1,他引:4  
对等温锻造FGH96合金的超塑性进行了研究.研究表明,FGH96合金在变形温度为1050℃和1100℃,初始应变速率ε0为1×10-2s-1~1×10-3s-1的拉伸变形条件下,均呈现出较好的超塑延性.在变形温度为1050℃,初始应变速率为1.67×10-3s-1时,合金超塑延伸率均可以达到825%.微观组织分析表明,FGH96合金超塑拉伸的断裂主要原因是空洞的长大和连接.  相似文献   

4.
粉末高温合金超塑性等温锻造技术研究   总被引:3,自引:1,他引:3  
对FGH96合金超塑性及等温锻造工艺进行了研究,结果表明,FGH96合金经晶粒细化处理后,在1020~1100℃,具有良好的超塑性;FGH96合金超塑变形时流变应力比热等静压后直接变形时显著降低,在1050℃以1×10-4s-1进行恒应变速率压缩变形,其流变应力只有60MPa左右;将FGH96合金超塑性变形应用于大型涡轮盘的等温锻造,使小设备超塑性等温锻造大型涡轮盘锻件成为可能.  相似文献   

5.
 用拉伸实验研究了低温预变形对碳化硅颗粒增强MR64复合材料超塑性的影响。材料在500℃,应变速率为8.33×10~(-3)s~(-1)的条件下拉伸,超塑变形延伸率达到210%,材料经过300℃低温预拉伸至35%的变形量以后,在超塑条件下拉伸延伸率达305%。通过对显微组织、孔洞的观察发现,低温预变形产生的形变组织在超塑变形初期发生了动态再结晶,晶粒尺寸得到进一步细化,孔洞面积率明显减少。低温预应变提高超塑性的主要原因在于它减少了变形过程中孔洞的数量。  相似文献   

6.
利用Gleeble-1500D热模拟试验机对40%SiC_P/Al-Cu复合材料进行压缩实验,研究其在温度为350~500℃、应变速率为0.01~10 s~(-1)条件下的高温塑性变形行为。由实验得出变形过程中的应力-应变曲线,采用加工硬化率处理方法对应力-应变数据进行处理,结合lnθ-ε曲线的拐点和(-α(lnθ)/αε)-ε曲线最小值的判据,研究该复合材料动态再结晶临界条件。结果表明:40%SiC_P/Al-Cu复合材料的应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力(σ_p)随变形温度的降低或应变速率的升高而增加;该材料的lnθ-ε曲线出现拐点,(-α(lnθ)/αε)-ε曲线出现最小值;临界应变(ε_c)随变形温度的升高与应变速率的降低而减小,且临界应变与峰值应变(εp)之间具有相关性,即ε_c=0.528εp;临界应变与Zener-Hollomon参数(Z)之间的函数关系为ε_c=4.58×10~(-3)Z~(0.09)。透射电镜观察显示应变为0.06时(变形温度为400℃,应变速率为10 s~(-1))已经发生动态再结晶,应变为0.2时,动态再结晶晶粒充分长大。  相似文献   

7.
Al-Li-Cu-Mg-Zr合金的超塑性研究   总被引:1,自引:0,他引:1  
Al-1.91Li-1.25Cu-0.46Mg-0.21Zr合金超塑性变形结果表明,最佳的时效工艺是400℃8h;冷轧工艺得到了比温轧(550%)更高的超塑性延伸率(630%);最佳超塑性变形工艺是T=500℃,(?)_i=3.33×10~(-3)s~(-1)(起始拉伸速度)。研究指出,Al-1.91Li-1.25Cu-0.46Mg-0.21Zr合金的超塑性预处理的时效工艺和轧制工艺影响了合金超塑变形初期的应变诱发再结晶,从而影响超塑性性能。超塑变形中的动态回变和动态再结晶是晶界滑动的重要协调机制之一。  相似文献   

8.
热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为   总被引:2,自引:0,他引:2  
通过热轧工艺制备了具有细晶微观组织的AZ31镁合金薄板。在250-450℃的温度范围和0.7×10-3-1.4×10-1s-1的初始应变速率范围内研究了热轧AZ31镁合金板的超塑性流变行为。分别通过光学显微镜和扫描电镜(SEM)观察了AZ31镁合金超塑性变形中的微观组织演变和断裂行为,并计算了不同温度下的变形激活能。结果表明,从300℃开始,热轧AZ31镁合金开始表现出超塑性的流变特征。在400℃,0.7×10-3s-1的变形条件下,最大延伸率可达362.5%,显示了良好的超塑性能。在300-400℃的超塑变形温度范围内,AZ31镁合金超塑变形的主要机制是由晶界扩散控制的晶界滑移,而变形温度和应变速率对AZ31镁合金断裂行为的影响主要体现在变形机制从晶内滑移到晶界滑移的转变。  相似文献   

9.
对GH4169高温合金板材超塑性及超塑成形进行了研究.研究结果表明:在典型的超塑成形应变速率范围(10-3~10-4)内,细晶GH4169合金在较宽的温度范围(920℃~980℃)内的延伸率都高于250%,最高延伸率可达513%,应变速率敏感性指数m值都大于0.3;合金在超塑过程中发生了晶粒动态长大,并且超塑变形后仍为等轴晶;利用超塑成形方法研制出了飞行器用GH4169合金燃气岐管,并通过了30MPa液压压力、保压10min的打压试验及20MPa、保压5min的气密试验.  相似文献   

10.
应用加工硬化理论探讨了SAE9310钢在大应变条件下的加工硬化率曲线及动态再结晶的拐点判据,根据在变形温度为900~1200℃、应变速率为0.01~10s-1条件下的等温恒应变速率压缩实验,采用拐点判据方法和金相观察手段,研究了SAE9310钢发生动态再结晶的临界条件,建立了该钢的动态再结晶状态图。结果表明,在本实验条件下,SAE9310钢的流变曲线呈现两种特征类型;发生动态再结晶的临界应变εc和临界应力αc均随应变速率的增大和变形温度的降低而增加;临界应变与峰值应变之间满足εc/εp=0.30~0.42;随着Z参数的增加,临界变形量增大,材料发生动态再结晶变得困难。  相似文献   

11.
采用金相(OM)及透射电子显微技术(TEM)对一种Al-Cu-Li合金的显微组织进行观察,对于该合金普通热轧板及超塑性预处理后的细晶板材进行高温拉伸试验.结果表明,该合金普通的热轧板经过快速再结晶退火延伸率可达94%~130%的高温塑性变形仍以晶内变形为主.经超塑性预处理的细晶板材当T=490℃,ε=10-3s-1时,延伸率为630%,其中时效24h的样品在较低温度下成形为晶内变形和晶界变形的混合模式,而时效48h的样品则在400~500℃都表现为晶界变形为主的超塑性变形模式.未经过再结晶退火比经过再结晶退火的样品具有更高的超塑性.  相似文献   

12.
采用一种新型形变热处理方法制备1420铝锂合金细晶超塑性板材,其再结晶平均晶粒尺寸约7μm.对细晶板材在温度范围450~570°C、应变速率5×10-41~×10-2s-1条件下进行高温超塑性拉伸,探求了对板材流动行为及组织演变的影响规律.在525℃和l×10-3s-1的变形务件下,板材呈现了最高延伸率,约为915%.  相似文献   

13.
采用应变速率循环法对TA15钛合金进行三组高温超塑性拉伸试验,变形温度区间为850~950℃,应变速率循环区间为5×10-6~5×10-4s-1。分析拉伸试验数据后,计算出TA15钛合金动态再结晶激活能Q,结合金相组织分析得出其热变形过程中发生了动态再结晶的结论;并利用Arrhenius模型构建超塑性本构方程,应用origin数据处理软件进行数据分析,求得TA15钛合金高温条件下的超塑性本构方程。运用1stopt软件修正了该本构方程,使其精度达到99.3%。结果表明,TA15钛合金的流动应力对变形温度较为敏感,随着温度的升高,流变应力逐渐减小,软化机制愈发明显,且在900℃附近的超塑性较好,伸长率达到了846%。  相似文献   

14.
研究了TiBw/TA15复合材料板材在900~960℃、5×10-4~10-2s-1条件下的超塑变形行为。结果表明,TiBw/TA15复合材料流变应力随拉伸温度的升高和应变速率的减小而降低,在940℃、5×10-3s-1变形条件下获得的最大超塑性伸长率为439%。利用Zener-Hollomn参数和Arrhenius方程所建立的峰值应力本构方程为ε·=3.55×108[sinh(2.0×10-2σ)]1.99×exp(-6.381×105/RT),其变形激活能Q=638.1kJ/mol。复合材料超塑性变形组织与拉伸温度和应变速率密切相关。高温低应变速率有利于基体α相的动态再结晶以及晶须与基体处孔洞的愈合,低温高应变速率下,孔洞更易萌生于增强相与基体结合界面的端部。动态再结晶对复合材料超塑性的发挥起着关键作用。  相似文献   

15.
采用TE015模高Q圆柱腔对X波段低损耗介质材料的复介电常数进行了变温测试,电场的极化方向平行于样品表面.可测温度范围为常温到200℃.在所有温度点上,空腔的无载品质因数均大于40000.复介电常数的测试范围为εr1.05~10,tanδ3×10-2~5×10-5,测试系统的最可几误差为|Δεr / εr|=1.5% ,|Δtanδ|=10% tanδ+3.0×10-5.  相似文献   

16.
铝青铜 QAl 10—3—1.5合金超塑性变形的研究   总被引:2,自引:0,他引:2  
铝青铜 QAl 10-3-1.5合金经超细化预处理工艺后,在830℃以初始应变速率(?)=1.67×10~(-3)s(-1)拉伸,得最高延伸率823%,流动应力23.67MPa。合金在拉伸变形时,其组织由α β δ三相构成;α相较硬,晶粒始终保持微细等轴状,其等轴比在1.01~1.36范围内。显微组织参数恰是微细晶粒超塑性所要求的组织条件。试样的断裂是由于在变形后期,因空洞长大连接所致。  相似文献   

17.
以氮化硼为烧结助剂,采用抽滤成型方法制备氮化硅短纤维多孔材料。通过氮化硼和氮化硅纤维的氧化过程分析,确定了最佳烧结制度。对不同氮化硼含量材料的微观结构、压缩及介电性能进行了测试分析。结果表明:在1 200℃时,氮化硼氧化增重达20%,氮化硅纤维表面明显氧化;随着氮化硼含量的增加,氮化硅纤维粘结明显,粘结点主要成分为二氧化硅和硼硅酸盐,氮化硅短纤维多孔材料的ε随着密度的增加从1. 36增加到1. 62,tanδ从7. 8×10~(-4)增加到9. 5×10~(-4),材料10%压缩应变下的压缩强度从0. 58 MPa提升到2. 03 MPa。  相似文献   

18.
为了准确检测介质片在3 mm频段的复介电特性,采用固定腔长法,研制了工作在101.80 GHz的测试介质片复介电常数准光学谐振腔测试系统。结果表明:腔体的品质因数达8×104,高斯波束的束腰半径为2.36 mm。复介电常数的测试范围ε′为2~8;tanδ为3×10-4~5×10-3,最可几误差为│Δε′/ε′│小于等于10%;│Δtanδ│小于等于20%tanδ+1×10-4。此方法能检测大面积介质片复介电常数的均匀性。  相似文献   

19.
钛合金是世界上公认的难加工材料,但是利用超塑性成形/扩散连接工艺(SPF/DB)可以制作出用焊接、铆接工艺方法难于制作的复杂的钛合金飞机部件,并且使部件一体化、轻量化,成本降低。美国的飞机制造商于七十年代初期开始研究钛合金的超塑性成形工艺(SPF),他们在899~927℃的高温和变形速率为10~(_4)厘米/厘米·秒的条件下,使钛合金的延伸率达到600~1000%,试件成形过程就象塑料板真空成形一样,在不发生缩颈和断裂的情况下进行均匀的复杂变形。目前,美国已在四个机种上采用Ti-6Al-4V超塑性成形(SPF)零件,数量达到256  相似文献   

20.
低温超塑性钛合金的超塑性研究   总被引:5,自引:1,他引:5  
对一种超塑性温度相对较低的双相钛合金SPZ的超塑性能进行了研究.结果表明:740~800℃,应变速率恒为1.11×10-3s-1时,SPZ合金的最大拉伸延伸率均超过1600%;760°C,合金的超塑延伸率可高达2149%.760℃,应变速率高达1.11×10-2s-1时,合金的超塑延伸率仍可达1380%.也就是说,700℃/1hAC处理后,SPZ合金在试验温度范围内具有低温高速超塑性.SEM观察发现,超塑变形前,合金的晶粒细小均匀,平均晶粒尺寸只有0.89μm;应变速率为2.22×10-3s-1,740℃,760℃变形后SPZ合金的晶粒尺寸分别为1.51μm,2.33μm.超塑性变形的微观机制是以晶界滑动为主,晶内变形以及位错蠕变起了协调作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号