首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
针对目前通用流固耦合算法在模拟实体元结构破坏上存在不足,以MSC.Dytran软件为平台,研究和验证了不考虑失效和考虑失效的实体元平板叶片流固耦合数值模拟方法;在此基础上,结合大涵道比航空发动机工作过程中较为常见且非常严重的鸟撞事故,建立了实体元空心叶片鸟撞瞬态动力学有限元模型并进行相应计算,结果表明:计算较好地模拟了叶片在遭受鸟体撞击后会产生巨大的瞬时冲击应力,以及叶片由此产生局部塑性变形.最后模拟了叶片遭受鸟撞发生失效的过程.   相似文献   

2.
实体元空心叶片鸟撞流固耦合 研究及数值模拟   总被引:1,自引:0,他引:1  
针对大涵道比航空发动机工作过程中常见的鸟撞问题,基于MSC.Dytran软件,研究了实体元平板鸟撞流固耦合数值模拟方法;在此基础上,建立了鸟撞实体元空心叶片转子级有限元模型,模拟了叶片遭受鸟撞发生失效的过程,并进行相应计算。结果表明:鸟体密度、叶片的屈服应力和硬化模量对叶片初始撞击应力响应峰值的影响较大,且屈服应力和硬化模量的增加分别会提高和减小恒定流动的应力峰值;鸟体体积模量对叶片应力响应的影响较小;叶片的弹性模量的增加对叶片初始撞击应力响应峰值的影响较小,但会显著提高恒定流动的应力峰值。  相似文献   

3.
针对CFM56-5B型发动机风扇叶片受鸟击问题,目前常采用实验和数值仿真两种方法,前者因成本条件客观问题难以实现,因此本文采用数值仿真来深入研究这一难题。本文运用CATIA三维软件进行建模,最大程度与实际风扇叶片相符,鸟体则采用目前应用广泛的椭球体流线型模型,运用LS-DYNA隐式求解方法对叶片进行离心应力初始化,建立了鸟撞叶片的数值计算模型,分析了鸟撞叶片的动态响应,通过大量仿真,得出鸟撞叶片的机械损伤程度与鸟的速度、受撞击位置之间的关系,为发动机风扇叶片的抗鸟撞设计提供帮助。  相似文献   

4.
鸟撞发动机在鸟撞事故中最容易造成飞机损坏失事的情况,为了研究发动机一级压气机转子抗鸟撞适航性能,对发动机转子在工作状态下进行鸟撞试验,鸟体质量为1 000 g,撞击速度为195 m/s,发动机一级转子转速为8 525 r/min;基于显式碰撞动力分析软件PAM-CRASH 建立相应的叶片鸟撞数值计算模型,通过与试验结果的对比来验证本文计算模型的合理性;根据发动机适航条例分析不同工况下发动机一级转子抗鸟撞性能。结果表明:大鸟撞击相比于中鸟鸟群和小鸟鸟群,对于叶片的撞击结果更加恶劣;叶尖位置撞击会引起叶尖部位的大变形,叶根和叶中位置撞击会引起叶片根部较大的集中应力,导致叶片断裂。  相似文献   

5.
基于流固耦合的实体元空心叶片鸟撞数值模拟   总被引:1,自引:0,他引:1  
针对通用流固耦合算法在模拟实体元结构破坏上的不足,以MSC.DYTRAN软件为平台,研究了不考虑和考虑失效的实体元平板叶片流固耦合数值模拟方法。在此基础上,建立了实体元空心叶片鸟撞瞬态动力学有限元模型,计算分析了叶片在稳定旋转状态下遭受不同密度、长度、半径及速度鸟体撞击下的叶片应力的瞬态响应,计算表明:上述参数值增加均会增大叶片的应力峰值,并且对应力峰值的影响都不是线性的。最后模拟了叶片的失效过程。  相似文献   

6.
为研究受到鸟撞前后压气机气动性能的变化,提出了鸟撞叶片结构-气动分析几何模型的转化流程,基于NASA Rotor37 转子得到了鸟撞变形叶片几何模型,分别建立了鸟撞前后的全通道气动性能CFD计算分析模型,在设计转速下开展了全3维黏性 流场数值模拟,并与Rotor37转子部件气动性能试验数据进行了对比分析。结果表明:模拟结果与试验结果非常接近,证明了该数 值模拟方法有效;鸟撞后叶片变形区域攻角增大导致的局部气流分离及并发的气流低速流动的耦合是转子气动性能恶化与转子 进入失稳工况的主要原因,含鸟撞变形叶片的转子压比、效率等气动性能参数明显降低,稳定工作边界明显缩小。所发展的气动 性能数值模拟方法与流程可有效地预估含变形叶片的压气机稳态气动性能。  相似文献   

7.
典型前缘结构抗鸟撞性能改进研究   总被引:4,自引:1,他引:3  
陈园方  李玉龙  刘军  刘元镛 《航空学报》2010,31(9):1781-1787
 针对某典型前缘结构,研究了使用纤维金属层板(Fibre Metal Laminates,FMLs)蒙皮进行抗鸟撞设计的可行性。以显式动态冲击分析程序PAM-CRASH为平台,结合由鸟撞平板试验结果验证的鸟体本构模型参数,建立了鸟撞前缘结构数值模型。通过计算研究了使用不同蒙皮(铝合金、FMLs)的前缘结构在鸟撞作用下的变形破坏模式及吸能效果。结果表明:采用适当铺层的FMLs蒙皮可以有效地提高前缘结构的抗鸟撞性能。研究结论对飞机结构的抗鸟撞研究具有一定的参考价值。  相似文献   

8.
鸟体本构模型参数反演I:鸟撞平板试验研究   总被引:2,自引:1,他引:1  
为了结合数值模拟得到鸟撞过程中的鸟体本构模型参数,对鸟撞平板进行了试验研究.鸟体质量分别为1.8kg和3.6 kg,平板材料采用厚度为10 mm和14 mm的LYl2铝合金和厚度为4.5 mm和8.0 mm的45#钢,鸟体撞击速度为70、120、170 m/s,共进行了16组鸟撞试验.采用动态数据采集系统获得了鸟撞过程...  相似文献   

9.
根据航空发动机结构特征和鸟撞后的风扇叶片损伤特征,提出风扇第一级转子叶片是发动机抗鸟撞关键零件,叶片前缘为抗鸟撞设计关键部位。建立一种风扇叶片鸟撞理论分析方法,研究撞击工况、结构参数与鸟撞过程、损伤模式、损伤程度的关系,提出前缘角度是抗鸟撞能力关键结构参数。当撞击工况确定后,前缘角度决定了撞击形式和叶片损伤模式,影响损伤程度。采用显示动力学仿真分析方法,设计了一种带前缘特征的模型,对前缘角度的影响规律进行了验证,并开展了实际风扇叶片改进设计,改进后的叶片被鸟撞击后变形减小最少33%,抗鸟撞击能力明显提升。  相似文献   

10.
为解决航空发动机宽弦空心风扇转子叶片抗鸟撞设计问题,对宽弦空心风扇转子叶片鸟撞损伤进行了数值仿真。采用光滑质点流体动力学(SPH)算法建立鸟体模型,采用J-C本构模型和失效模型定义材料冲击下动态性能,建立旋转状态下叶片鸟撞数值仿真方法,经过试验验证能够较准确预测叶片损伤。开展相同条件下鸟撞击宽弦空心和实心风扇转子叶片仿真,对比鸟撞击叶片过程、撞击时叶片叶尖最大轴向和径向变形、撞击后叶片永久变形,研究被鸟撞击后空心叶片相比实心叶片的损伤特征。结果表明:空心和实心叶片鸟撞击过程相同;空心叶片被鸟撞击后叶尖轴向和径向变形更小;空心叶片被鸟撞击后前缘卷边变形更严重,对风扇气动性能和稳定性影响更大;在结构设计时应适当增加前缘空心区域局部刚度,或者适当增大前缘实心区域范围,用于提高空心叶片的抗鸟撞能力。  相似文献   

11.
航空发动机宽弦风扇叶片鸟撞损伤模型标定   总被引:4,自引:3,他引:1  
为建立航空发动机风扇叶片抗鸟撞载荷能力的量化预测方法,针对特定的航空发动机宽弦风扇叶片设计,依据发动机在典型工作状态下的吸鸟速度、角度等撞击参数开展叶片鸟撞试验,采用显式动力学数值仿真方法,建立叶片鸟撞试验仿真分析模型,并通过对模型中叶片材料参数、鸟体本构模型参数、鸟与叶片耦合接触参数进行敏感度分析,对模型进行标定.结果表明,标定后的鸟撞分析模型所预测的叶片损伤模式与试验结果一致,预测的损伤位置与试验测量结果误差小于10%.   相似文献   

12.
航空发动机第1级风扇叶片鸟撞研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对目前对鸟体撞击风扇部位影响分析不全的问题,计算了鸟体飞向叶片不同部位和穿过支板间隙的概率,在此基础上分析了鸟体撞击旋转状态第1级风扇叶片不同位置的概率。基于数值模拟技术,建立了鸟体撞击叶片的有限元模型,模拟鸟撞击风扇叶片叶尖、叶中、叶根部位,在分析引起叶片不同位置塑性变形的基础上,进一步确定了风扇损伤最大的位置。针对4种不同的鸟体撞击速度,对发动机第1级风扇叶片鸟体撞击部位损伤进行了分析。得到鸟体穿过叶尖部位支板间隙的概率约为50%,撞击叶尖部位概率约为16.7%,是最容易撞击的部位,受到的损伤也较大。计算结果可以为确定发动机风扇叶片鸟体撞击损伤提供参考。  相似文献   

13.
叶片鸟撞击的理论和实验研究   总被引:5,自引:1,他引:4  
高德平  李清红 《航空动力学报》1990,5(4):335-338,373
本文对叶片受鸟撞击损伤的机理进行了理论和实验研究。开发了鸟撞击过程数值分析和叶片响应数值计算的软件系统, 建立了鸟撞击模拟试验设备, 进行了平板叶片的软体撞击试验。通过高速摄影, 记录了叶片受软体撞击后的变形过程, 为进一步研究叶片鸟撞击损伤问题打下基础。   相似文献   

14.
跨声速风扇叶片变形对气动性能的影响   总被引:10,自引:3,他引:7  
郑赟  田晓  杨慧 《航空动力学报》2011,26(7):1621-1627
为了研究跨声速风扇叶片变形对气动性能的影响,发展了流固耦合方法计算风扇叶片在气动力作用下变形的数值程序,耦合求解了三维可压缩雷诺平均的Navier-Stokes (N-S)方程和描述叶片振动的结构动力学方程,并模拟了跨声速风扇Rotor 67转子叶片在气动载荷下的变形,重点分析了由于叶片变形带来的气动性能的变化.   相似文献   

15.
载荷与响应耦合下叶片鸟撞击响应分析   总被引:4,自引:0,他引:4  
分析飞鸟与航空发动机叶片的撞击损伤时,需要准确预估叶片的瞬态响应。其中叶片的变形会影响到撞击载荷的大小与分布,从而影响到叶片的响应。本文提出一种简单有效的计算方法,考虑了上述耦合效应,并以模型叶片为例,分析了它对叶片响应的影响程度,为工程实际应用积累了经验。  相似文献   

16.
考虑鸟撞的航空发动机叶片动态拓扑优化设计   总被引:1,自引:1,他引:0  
为了实现航空发动机冷端风扇叶片在考虑鸟撞情况下的轻量化设计,从结构拓扑优化计算的角度出发,对该问题展开深入的研究并提出具体的解决方案。针对叶片优化中存在的优化模型建立,结构动态工况优化,多条件约束并存处理,多工况联合优化等关键问题,进行了理论上的深入分析研究,阐述了结构多约束、多工况动态优化的理论基础,并结合相应的数值计算平台,提出了风扇叶片分步优化计算的方案,对航空发动机叶片进行拓扑优化计算。计算结果显示,最终的叶片轻量化结构满足所有鸟撞与离心载荷多工况的优化约束条件,拓扑结构中材料分布合理,在满足适航条例强度要求的同时质量减少达37.9%,具有一定的实际参考应用价值,同时所提出的动态优化计算方案,在工程结构的动态优化中具有广阔的应用前景。  相似文献   

17.
采用流固耦合方法的整级叶片鸟撞击数值模拟   总被引:9,自引:3,他引:6  
利用MSC.DYTRAN软件建立了鸟撞航空发动机叶片转子级瞬态动力学有限元模型,采用流固耦合算法,模拟受气动和离心载荷作用并稳定旋转的发动机转子叶片,遭受不同鸟体撞击的瞬态响应过程.计算结果表明:鸟体撞击会使叶片产生巨大的瞬时冲击应力;鸟体速度、密度和尺寸的增加,将迅速增加叶片的冲击应力峰值,当叶片硬化和变形能力达到充分发展后,冲击应力峰值的增加速度会变慢;同时,叶片材料静态硬化模量的增加也会提高冲击应力峰值,而静态屈服强度的增加则会减小冲击峰的作用时间.最后还进一步模拟了鸟撞使叶片发生失效破坏的过程.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号