首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于火焰面模型的超声速燃烧混合LES/RANS模拟   总被引:7,自引:5,他引:2  
为了明晰超燃冲压发动机燃烧室内部燃烧过程的细节,建立了超声速湍流燃烧稳态火焰面亚格子模型,并采用混合LES/RANS方法对氢燃料超燃冲压发动机进行算例验证.控制方程对流项用五阶精度WENO格式离散,时间方向采用二阶Runge-Kutta方法.研究表明:(1)冷流流场中燃料分布与大尺度结构分布相似,说明混合过程受大涡控制;(2)燃烧流场中涡的尺寸明显变大,且仅存在于火焰面上,另外温度分布和主要生成物分布与涡量云图基本相同,说明燃烧过程也由大涡控制;(3)时均计算结果与实验阴影基本符合,速度剖面和温度剖面与实验测量值定性一致,说明本文的数值模拟方法和燃烧模型可以较好地描述和预测超声速流动燃烧过程.  相似文献   

2.
支板喷射超声速湍流燃烧的大涡模拟   总被引:3,自引:2,他引:1  
为了发展可行的超声速湍流燃烧大涡模拟方法,将设定型PDF(Probability Density Function)模型与LES(Large Eddy Simulation)相结合以封闭亚格子湍流-燃烧相互作用,并将模型用于支板喷射超声速湍流燃烧流场的数值模拟。分别对冷流及燃烧流场进行了模拟,计算结果与实验测量符合较好,表明了所采用方法及模型的可行性。冷流条件下,大尺度湍流涡通过卷吸、拉伸运动主导支板尾迹区的近场混合,并通过破碎过程影响远场混合。燃烧条件下,回流区尺度扩大,剪切层中形成的高温燃烧产物通过大涡卷吸以及回流区末端对流作用进入回流区并与其中的燃料喷流相互作用,使部分燃料预热升温并进入回流区两侧剪切层与主流空气混合、燃烧,从而实现火焰稳定。在薄反应剪切层及大尺度反应涡的边界区域,LES网格不足以直接求解湍流与燃烧的相互作用,PDF模型给出了较强的亚格子脉动。  相似文献   

3.
甲烷/空气射流抬举火焰的大涡模拟计算   总被引:12,自引:12,他引:0       下载免费PDF全文
韩超  张培  叶桃红  陈义良 《推进技术》2014,35(5):654-660
为了研究中高温伴流中的自动着火特性,采用大涡模拟(LES)和均匀搅拌器(PSR)结合假定概率密度函数的建表湍流燃烧模型对甲烷/空气射流在高温伴流中的抬举火焰数值研究,并比较反应进度的不同概率密度分布对结果的影响。结果表明,计算结果与实验值符合得较好。PSR建表方法能够捕捉到高温伴流抬举火焰的点火过程,能够正确预测火焰的抬举高度,但在火焰稳定燃烧区域该建库燃烧模型还存在不足。同时,反应进度的亚格子脉动对准确模拟抬举高度十分重要。  相似文献   

4.
预混燃烧大涡模拟和燃烧模型的检验   总被引:3,自引:3,他引:0       下载免费PDF全文
用代数二阶矩亚网格(ASOM-SGS)燃烧模型对文献中测量的钝体后方丙烷-空气预混燃烧进行了大涡模拟,模拟统计的时平均速度、速度脉动均方根值和温度分布与实验数据结果吻合很好,表明所采用的ASOM-SGS亚网格燃烧模型是合理的。模拟的瞬态结果显现了钝体后方湍流流动和火焰结构。将大涡模拟数据统计得到的反应率系数-浓度关联量的分布规律,与代数二阶矩RANS(ASOM-RANS)燃烧模型的模拟值进行对比,结果发现,大涡模拟统计值和ASOM-RANS模型的模拟值很接近,从而证明了湍流燃烧代数二阶矩RANS模型的合理性。  相似文献   

5.
三维贴体坐标系下燃烧室热态流场的大涡模拟   总被引:6,自引:2,他引:6       下载免费PDF全文
颜应文  赵坚行  张靖周  刘勇 《推进技术》2005,26(3):219-222,247
大涡模拟三维贴体坐标系下环形燃烧室火焰简热态紊流瞬态流场。利用椭圆方程方法生成三维贴体网格,计算中采用k方程亚网格尺度模型估算亚网格紊流粘性;亚网格EBU燃烧模型估算化学反应速率;热通量辐射模型估算辐射通量。并在非交错网格系下采用sIMPLE算法和混合差分格式求解离散方程,利用壁面函数处理固壁边界条件。计算结果与实验结果的比较表明,采用大涡模拟方法能更真实反映环形燃烧室火焰简内紊流化学反应流气流结构和燃烧过程。  相似文献   

6.
路易聘  肖隐利  李文刚 《推进技术》2021,42(9):2082-2093
为了深入理解分层旋流流场特征和燃烧稳定性,采用OpenFOAM对分层旋流燃烧器的冷态和燃烧流场进行了大涡模拟。研究了旋流数对分层旋流流场结构和非稳态特性的影响。采用Q准则显示了流场中的瞬时涡结构;利用功率谱分析了流场中的进动特征。结果表明:在冷态工况下,旋流对回流区的位置和大小影响较小。随着旋流数增大,出口气流受到旋流诱导的离心作用,流动发散,流场扩张角变大,流场下游出现二次回流区。平均流场的三维流线与螺旋涡在空间中均表现成正交关系,表明螺旋涡是由剪切层Kelvin-Helmholtz不稳定性产生。在燃烧工况下,随着旋流数增大,回流区的面积增大,平均温度分布不断沿径向扩张,火焰锋面脉动增强,涡旋发生破碎的位置明显向上游移动。  相似文献   

7.
大涡模拟研究钝体有旋流流场的拟序结构   总被引:3,自引:0,他引:3  
对带有中心钝体的分层旋流燃烧器的冷态流场进行了大涡模拟(LES),选取动态Smagorinsky涡黏模型作为亚格子模型,研究旋流数为0.45时旋流场的大尺度拟序结构。模拟结果表明:瞬时压强等值面显示的内外螺旋涡及进动涡核(PVC)均与平均速度场流线在空间上呈正交关系,表明两种涡结构均由剪切层Kelvin-Helmholtz不稳定性产生。Q准则等值面显示内外螺旋涡在下游20mm左右开始发生破碎。PVC发源于环形旋流与环形射流剪切层附近的下游区域。瞬时周向速度的功率谱密度(PSD)出现明显的特征峰,表明PVC影响附近的流体,使之出现进动特征。采用本征正交分解(POD)重构湍流脉动速度场,不同模态下功率谱密度结果表明前两个模态的大尺度结构具有进动特征,使用前两个模态的周向脉动速度等值面显示了PVC周围流体的大尺度涡旋结构。  相似文献   

8.
两种亚网格燃烧模型的旋流扩散燃烧大涡模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
用二阶矩亚网格(SOM—SGS)燃烧模型和文献中的涡旋破碎亚网格(EBU—SGS)燃烧模型,对甲烷一空气旋流扩散燃烧进行了大涡模拟,将二者得到的LES统计平均温度分布和实验结果以及用二阶矩燃烧模型的统观模拟(RANS—SOM)结果比较,表明LES—SOM和RANS—SOM的模拟结果都和实验符合较好,而LES—EBU的模拟结果和实验不符合,在不同区域内高估或者低估了燃烧温度。其原因是由于EBU模型不能有效地考虑有限反应动力学的作用。LES—SOM模拟的瞬态结果显示了旋流扩散火焰的湍流大涡结构不同于射流火焰的特点。  相似文献   

9.
在三维任意曲线坐标系下采用欧拉-拉格朗日两相大涡模拟方法对环形燃烧室火焰筒气液两相紊流瞬态反应流进行数值模拟.采用椭圆偏微分方程生成三维贴体网格,计算中所采用的数学度模型有:k方程亚网格尺度模型估算亚网格紊流粘性;亚网格EBU燃烧模型估算化学反应速率;热通量辐射模型估算辐射换热.并在非交错网格体系下气相采用SIMPLE算法和混合差分格式求解,液相采用随机离散模型(Stachasttc Separated Flow,简称SSF),在拉格朗日坐标系下追踪各油珠群沿各自轨道运动、质量损失及能量变化.通过计算结果与实验数据相比较,表明在三维贴体坐标系下对燃烧室火焰筒两相紊流油雾燃烧流场进行大涡模拟,采用欧拉-拉格朗日两相大涡模拟方法能反映两相紊流化学反应流流动及实际燃烧过程.  相似文献   

10.
对三维对流马赫数0.62的超声速混合层流动的标量混合进行大涡模拟, 控制方程对流项采用五阶精度的WENO格式求解, 小尺度涡的作用采用一方程LDKM亚格子模型处理, 过滤后的组分方程中的亚格子组分对流通量采用梯度扩散模化.模拟得到了混合层流场大尺度拟序结构以及标量场的演化过程, 研究表明标量混合过程受混合层内涡系演化所控制, 标量场具有明显的三维特征.模拟得到的速度、组分及其脉动的统计时均结果和实验结果相符较好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号