首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
并列双方柱的疏水涂层防冰效果结冰风洞实验评估   总被引:1,自引:1,他引:0  
采用结冰风洞实验研究的方法,利用0.3m×0.2m结冰风洞主实验段,在不同结冰气象条件下对涂覆在并列双方柱实验模型表面的不同纳米疏水涂层结冰特性进行了实验研究,对左右并排的方柱实验模型表面的结冰外形进行了测量和比较,建立了基于9个结冰外形几何特征量的防冰效果量化评估方法,对有、无纳米疏水涂层表面的结冰外形几何特征量无量纲化偏差进行了计算和分析。研究表明:基于结冰外形几何特征量的防冰效果量化评估方法可以较好地评估纳米疏水涂层的防冰效果。与未涂覆防冰涂层的铝合金材料相比,硅橡胶及其添加颗粒的纳米涂层均具有一定的防冰性能,与硅橡胶涂层相比,有的添加颗粒的纳米涂层防冰效果略好一点,而有的略差一点,没有明显提高。在硅橡胶基底材料中添加纳米疏水颗粒,可以在涂层表面构筑一些微纳结构,从而起到防冰作用。因此,在硅橡胶涂层中添加纳米疏水颗粒是一种值得探索的防冰涂层制备研究方向,但如果仅采用物理混合搅拌的方法,纳米颗粒难以在硅橡胶涂层表面形成稳定疏水性能的微纳乳突结构。纳米疏水涂层只能降低结冰速率,无法完全杜绝材料表面的结冰现象。   相似文献   

2.
如何规避飞机结冰产生的飞行安全隐患一直是航空领域的重要问题。近年来,疏水材料表面被动防覆冰概念被提出并快速发展起来。首先介绍了在液滴冲击阶段防止表面结冰的机理及方法,系统综述了包括减少水滴与表面接触时间以及减少冰核形成时间的研究方案。又进一步介绍了液滴结冰后的防覆冰机理,综述了通过优化疏水表面性能及微纳结构形貌减小冰黏附力的研究进展。最后对疏水表面防覆冰的发展趋势进行了展望。  相似文献   

3.
崔静  张杭  翟巍  路梦柯  杨广峰 《航空学报》2021,42(6):424032-424032
飞机发动机进气道前缘唇口积冰将会严重威胁航空安全,仿生研究表明具有微纳结构的疏水表面可以起到良好的抑冰效果。针对飞机唇口材料TC4,采用飞秒脉冲激光诱导制备TC4微结构表面,利用三维形貌仪和扫描电镜对TC4合金表面三维形貌和微纳结构进行观测,应用接触角测量仪分析表面浸润改性,依托结冰特性实验系统测试微结构表面抑冰抑霜性能,并分析飞秒脉冲激光加工工艺参数对表面微观结构和抑霜特性的影响机制。研究结果表明:随着激光扫描速度的增大,TC4合金表面形成的拱形沟壑深度增加,沟壑上方出现干涉条纹以及圆形凸起且微纳凸起的尺寸随扫描速度的增大而增大,接触角先减小后增大再减小;加工后表面液滴冻结时间比未加工表面延迟30 s;扫描速度2 000 mm/s时的液滴冻结时间最长,霜层质量最小,高度最低。飞秒激光加工TC4合金表面形成的微纳结构以及表面吸附的有机物能够改变表面接触角;粗糙度和表面形貌能够影响表面结冰时间和结霜量。  相似文献   

4.
利用TalyScan150型表面粗糙度测试仪及其分析软件,对含有纳米碳粉、碳纳米管、复合碳纳米管、微米级磁性铁粉和不含微纳粒子的高硅氧纤维增强酚醛树脂复合材料的烧蚀表面进行了测试和分析,研究了材料的烧蚀特性与所引入的微粒子高温结构性能的对应关系.结果表明,微纳粒子自身的高温结构稳定性直接影响材料的烧蚀性能,含有高温结构稳定的纳米碳粉、碳纳米管、复合碳纳米管的试样,其烧蚀性能较不合微纳粒子的试样有明显提高,烧蚀表面粗糙度也有显著改善;含有高温结构稳定性差的微米级磁性铁粉试样的烧蚀性能较不含微纳粒子的试样明显恶化,烧蚀表面的粗糙程度明显增大.其机理是高温结构稳定的微纳粒子通过自身的耐高温特性及其对材料结构的增强作用提高了材料抵抗了高温气流冲刷的能力.  相似文献   

5.
液体防冰、电热防冰、气热防冰、机械除冰等传统的防/除冰技术具有显著的防/除冰效果,但存在消耗能源大、防冰时间有限以及除冰不彻底等问题,而基于疏水/超疏水表面的防/除冰技术则具有独特的优势。本文首先阐述了利用疏水表面和超疏水表面防/除冰的原理及其影响因素;然后,总结了常用的疏水表面和超疏水表面在防/除冰中存在的问题,并指出利用液滴的反弹特性可更加有效地抑制结冰;最后,提出未来有必要对撞击液滴的动力学过程、传热过程和结冰过程的耦合特性进行系统研究,进而为利用液滴的反弹特性抑制结冰提供一定的理论指导。  相似文献   

6.
对超疏水和超润滑防冰表面的制备方法进行了综述。分析了制备防冰表面的重要意义,重点介绍了化学涂层、表面微纳结构和液体润滑层3种获得超疏水和超润滑防冰表面方法的研究现状,并对防冰表面的发展进行了展望。  相似文献   

7.
直升机主旋翼桨叶在结冰气象条件下有结冰的危险, 为了满足直升机全天候仪表飞行的要求, 必须对桨叶采取结冰防护.本文针对某翼型直升机桨叶, 通过分析表面各项热流, 计算表面温度为零时极限结冰状态的临界速度, 确定了桨叶展向结冰防护范围为沿展向从翼根到翼尖0~95%;采用分析水滴在气流场中运动的拉格朗日法计算水滴撞击特性, 确定桨叶弦向结冰防护范围为上表面12%, 下表面33%.在此基础上对桨叶表面加热形式和结构进行设计, 可为直升机旋翼桨叶防/除冰系统设计奠定基础, 此研究具有重要的实用价值.   相似文献   

8.
液滴撞击超疏水表面的能量耗散机制   总被引:1,自引:0,他引:1  
针对飞机表面易结冰部位设计超疏水表面,可以大幅度减轻对高能耗防/除冰技术的依赖程度,进而提高飞机的燃油经济性。主要通过实验研究与数值模拟的手段,分析讨论了液滴撞击分级粗糙结构超疏水表面过程中的能量耗散机制。以Ti6Al4V为基体经过喷砂处理形成微米级粗糙结构,然后在1mol/L的低浓度NaOH溶液中水热生长一层一维纳米线,构建出微/纳米复合粗糙结构并氟化修饰获得超疏水表面。通过场发射扫描电镜(FE-SEM)观察了微观形貌的变化规律,利用动态视频接触角测量仪表征试样表面液滴表观接触角与接触角滞后。基于气液两相流动界面追踪的复合Level set-VOF方法,实现了液滴撞击超疏水表面过程的数值模拟。采用高速摄像技术记录了撞击液滴在超疏水表面的运动过程,实验验证了模拟方法与铺展计算模型的正确性,并详细讨论了液滴运动过程中的能量耗散问题,分析表明液滴撞击过程中的能量耗散主要取决于超疏水表面的动态润湿特性和润湿界面模型。  相似文献   

9.
超疏水表面技术对防止发动机进口迎风部件结冰具有重要的工程应用价值。通过介绍接触角、滚动角等润湿性模型及低表面能物质微观成分,阐述了超疏水表面的工作原理,及可用于发动机防冰部件的超疏水涂层表面和超疏水金属表面的制备方法;分析了超疏水表面具有的疏水性能和疏冰性能对发动机防冰的影响;展望了超疏水表面技术在发动机防冰部件的应用前景,并提出了应用超疏水表面技术防冰存在的问题,为研制新型、高效的发动机防冰系统提供了新的思路和途径。  相似文献   

10.
飞机在飞行过程中经常面临结冰危险,具有迫切的防冰需求,高效节能的超疏水电热复合防冰蒙皮具有广阔的应用前景,但目前设计流程中尚未考虑超疏水表面过冷水滴收集特性。为充分发挥超疏水表面对飞机防冰系统的作用,本文设计了一套液滴直径与流量可精准控制的喷雾装置,确定了过冷水滴捕获率试验的方案,并结合传热及表面特性相关理论总结了不同试验条件下表面捕获率变化规律。试验结果表明,在一定环境条件中,超疏水表面与聚酰亚胺(PI)表面的过冷水滴捕获率相对值保持稳定,约为25%。结合热传递及受力分析,超疏水表面能够有效减少水滴在表面的停留总量及停留时间,从而降低过冷水滴捕获率。本文为新一代超疏水电热复合蒙皮的防冰功率精确设计与能耗优化提供了依据,对保证恶劣环境下无人机正常工作具有重要意义。  相似文献   

11.
引言 结冰条件下飞行,其未防护翼表面会结冰,未防护翼表面结冰后会导致飞机的气动力变化,从而影响飞机的飞行性能[1].  相似文献   

12.
飞机结冰热力学行为研究综述   总被引:3,自引:3,他引:3  
热力学现象是制约飞机结冰特性的重要现象之一。开展飞机结冰过程热力学行为的研究旨在深入把握结冰过程的规律特征,从而为建立科学有效的结冰防护手段、保障结冰条件下的飞行安全奠定基础。本文回顾和介绍了飞机结冰热力学研究所涉及的过冷水滴存在的物理机制、结冰热力学条件、形核与晶体生长、耦合液/固相变的复合传热传质特性,以及热力学效应作用下的结冰物理特性等相关领域的研究进展及发展现状,并基于国外相关研究的发展趋势,提出了中国未来飞机结冰热力学研究需重点关注的方向。  相似文献   

13.
飞机结冰威胁飞行安全,针对这一问题,通过记录结冰动态过程及测量表面温度变化对比研究了布置在NACA0012翼型上的等离子体激励、电阻丝电热及石墨烯电热在结冰风洞中的防冰性能。结果表明:在输入功率相同的情况下,等离子体激励和石墨烯电热均能有效地实现防冰,而电阻丝电热在无热源区域无法完全预防结冰。红外测量结果表明:石墨烯电热膜加热后表面最高温度低于其他2种方法。然而,由于其均匀的加热特性,整个加热表面的最低温度保持在0℃以上,足以防止结冰。对于等离子体激励和电阻丝电热,二者表面的温度分布具有不均匀性,通过散热性能对比,等离子体激励要高于电阻丝电热。等离子体激励通过在近壁面气体放电直接加热激励器周围的来流冷空气与过冷水滴,而电阻丝加热对绝缘介质的热传导性能差,无法有效增加周围热量致使容易在无热源区域结冰。  相似文献   

14.
疏水微槽道内层流减阻的实验研究   总被引:2,自引:0,他引:2  
研究了光滑和带有横向凹槽结构的疏水微槽道内层流的流动特性和表面滑移效应。在硅片上加工了矩形截面微槽道,利用十八烷基三氯硅烷(octadecyltrichlomsilane OTS)在槽道内壁形成疏水薄膜。实验结果表明在光滑疏水微槽道内的水流压降比无滑移条件下的理论值减少8%。对于侧壁带有凹槽结构的疏水微槽道,流动阻力可以降低10%~30%。笔者采用micro—PIV测量得到的壁面表观滑移速度约为槽道中心速度的8%,滑移长度约为2μm。实验结果与滑移壁面条件下三维槽道内层流的解析解吻合,同时得到了带有凹槽结构的疏水微槽道内的流速分布。  相似文献   

15.
疏水涂层表面防冰效果的结冰风洞实验研究   总被引:2,自引:0,他引:2  
采用结冰风洞实验的研究方法,对不同疏水涂层表面的防冰效果进行了研究,建立了综合考虑结冰外形、结冰速率和结冰强度等量化参数的防冰效果评估方法。实验研究表明,硅橡胶的防冰效果并不明显,但添加16烷的硅橡胶却显示出了更好的防冰效果,因此,在高分子涂层中添加小分子材料是一种值得探索的防冰涂层研究方向。疏水涂层只能降低结冰速率,无法完全杜绝材料表面的结冰现象,需要对涂层配方及其防冰机理进行更深入的研究,才能获得更好的防冰效果。研究结果对于防冰理论和技术的发展具有现实的意义。  相似文献   

16.
超疏水表面减阻水洞实验及减阻机理研究   总被引:8,自引:0,他引:8  
针对超疏水表面功能材料在流动减阻方面的潜在应用,通过水洞实验研究了具有超疏水表面航行器模型的阻力特性,获得了其减阻特性曲线,并得到了超过20%的减阻效果。对超疏水表面进行了表面能特性和滑移特性分析,认为表面组分中的疏水基团和表面微观结构分别导致了超疏水表面的低表面能效应和壁面滑移效应,两者是超疏水表面具有减阻作用的直接原因。  相似文献   

17.
为了消除航空飞行器表面、电力传输电缆、风力涡轮机叶片等因低温结冰而带来的不利影响,同时为了增强航空飞行器表面吸波涂层的自清洁能力,将经过硅烷偶联剂改性的纳米二氧化硅(n-SiO2)和微米二氧化硅(m-SiO2)填料按照质量比6∶1共混后与聚氨酯(PU)基体复合制得多级次改性SiO2/PU超疏水涂层。研究表明,m-SiO2在PU基体中较好的分散状态提升了涂层的稳定性,有效消除了因n-SiO2团聚而出现的涂层开裂现象。n-SiO2和m-SiO2填料在涂层的表面共同构筑起致密的多级次微凸起疏水结构,可以截留更多的空气来增大水滴的气–液接触面积。多级次改性SiO2/PU超疏水涂层的水接触角可达158.56°±1.08°,并且具有良好的自清洁能力和耐磨性。此外,多级次改性SiO2/PU超疏水涂层优秀的透波性能使其不会对吸波涂层的性能产生不利影响,表明制备的多级次改性SiO2/PU...  相似文献   

18.
结冰将改变飞机空气动力表面形状,不仅使飞机空气动力性能下降,还会导致气动噪声的变化。为研究结冰对翼型气动噪声的影响,采用计算流体力学方法对前缘带光滑霜冰的NACA0012翼型表面声学特性进行了数值计算。采用C型网格拓扑结构对结冰翼型的计算区域进行了划分,采用不可压缩雷诺平均N-S方程对结冰翼型周围黏性流场进行了数值计算,采用基于Proudman理论的宽频噪声模型和Curle的表面积分方法预测了结冰翼型的表面声学参数,获得了沿结冰翼型弦向分布的表面声功率和表面声功率级。研究表明,0°或小攻角时,靠近前缘霜冰区域的流动转捩或流动分离使结冰翼型的表面声功率更高;较大攻角时,靠近后缘的区域发生流动分离,使后缘的表面声功率增加,进一步增加了结冰翼型的表面声功率。前缘霜冰产生的流动转捩和流动分离是结冰翼型气动噪声增加的主要原因。  相似文献   

19.
航空发动机内部冰晶结冰研究综述   总被引:3,自引:0,他引:3       下载免费PDF全文
袁庆浩  樊江  白广忱 《推进技术》2018,39(12):2641-2650
为深入理解航空发动机内部冰晶结冰现象,把握冰晶结冰过程的特征规律,建立科学有效的冰晶结冰防护手段,对近年来冰晶结冰文献资料进行了调研和总结。回顾了冰晶结冰现象的发现与证实的过程,重点阐述冰晶结冰与过冷水结冰的区别、冰晶结冰模拟试验及计算方法,并对冰晶结冰问题有待进一步研究的方向做了展望。  相似文献   

20.
在防/除冰系统工作前提下翼面前缘残余积冰对全机失速特性的影响是评估系统效能是否达标的直接依据。针对中外翼区域重点防护的大型客机增升构型除冰方案,基于数值模拟方法对比分析了缝翼未结冰、未除冰、除冰状态下的失速特性。数值模拟结论表明虽然中外翼防/除冰防护区域较同类民机型号有所缩减,但仍能维持内翼始发分离流动形态、保证临界迎角附近的纵向力矩安定性、有效拓展失速边界。当前方案取消当地结冰防护的空气动力学依据是短舱外侧固有的下洗-展向流动综合效应已能充分削弱来流迎角影响,进而抑制局部结冰诱导的流动分离。研究结论可为防护区域设计优化及大型客机结冰适航取证提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号