首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
4D打印技术是一种采用3D打印工艺方法实现具有对外界刺激响应功能、可变形状或性能的智能结构增材制造技术。综述了4D打印技术的基本工艺方法,如形状记忆材料4D打印、仿生复合材料结构4D打印、外场驱动智能结构4D打印等;分析了现有4D打印技术在变形过程不连续、制备难度较大、难以实现变形过程可控等方面存在的问题;提出了连续纤维增强复合材料的4D打印策略,展示了任意可展曲面结构的设计与4D打印流程;分析了4D打印技术未来在航空航天、生物医疗及软体机器人等领域的潜在应用价值。  相似文献   

2.
增材制造技术是一种逐点、逐线、逐面增加材料而形成三维复杂结构零件的近净成形工艺,3D打印技术日渐成熟,其所制备出的产品组织结构致密、性能稳定。近年来,学者们将增材制造技术应用于智能材料的打印,实现该技术由空间维度到时间维度的扩展。本文重点介绍了3D打印与4D打印的研究现状与发展前景,以期为从事该领域的工作人员提供借鉴。  相似文献   

3.
空间3D打印技术现状与前景   总被引:1,自引:0,他引:1  
空间制造能力对太空探索具有重要意义,空间3D打印是实现空间制造的一项关键技术。阐述了空间制造的起源以及空间3D打印的技术现状,围绕着3D打印材料、工艺及空间环境适用性等问题,分别讨论了面向空间舱内环境、在轨原位环境、星球基地环境下空间3D打印技术的研究进展,提出了面向空间应用的高性能复合材料3D打印、多自由度3D打印等工艺方法,以应对空间环境的多重需求。分析并指出了实现空间3D打印技术面临着空间极端温差环境、能源利用、材料来源与性能等技术挑战;围绕我国空间站建设与月球探索工程,讨论了我国空间3D打印技术的发展前景与可能的实施途径。  相似文献   

4.
4D打印技术是最近一段时间快速发展的新兴增材制造技术,对飞机等航空航天装备的结构智能化发展具有重大前瞻性意义。本文论述了战斗机的发展及对多功能结构的需求,阐述了4D打印在实现飞机功能融合方面的重要作用;探讨了4D打印的定义、专用材料、工艺装备及结构构型特征;讨论了4D打印在航空飞行器智能变体结构、新一代热防护及新型隐身技术方面的应用潜力;给出了4D打印的技术成熟度提升、关键技术突破及学科融合方面的发展建议。  相似文献   

5.
3D打印技术是一种逐层成形的增材制造技术,而纤维增强树脂基复合材料是一种力学性能优异的先进结构材料,结合3D打印的工艺先进性和纤维的材料性能优势,提出新型的纤维增强树脂基复合材料3D打印工艺,为进一步促进两者共同发展与应用提供了可能。综述并分析了纤维增强树脂基复合材料3D打印技术的研究现状与瓶颈,提出了一种连续纤维增强热固性树脂基复合材料3D打印工艺,将3D打印丝材制备、3D打印预成型体、3D打印预成型体固化分隔成3个独立的模块,并根据不同模块设计搭建了不同的试验平台及设备,成功制备得到了连续纤维增强热固性树脂基复合材料3D打印构件,还测试得出其(纤维含量为52%)拉伸强度及拉伸模量分别达到1325.14MPa和100.28GPa;弯曲强度及弯曲模量分别为1078.03MPa和80.01GPa;层间剪切强度为58.89MPa。大幅提高了纤维增强树脂基复合材料3D打印成型构件的力学性能。  相似文献   

6.
陈向明  姚辽军  果立成  孙毅 《航空学报》2021,42(10):524787-524787
纤维增强复合材料因其优异的力学性能已被广泛应用于各工业领域,但由于传统制造工艺的限制,复合材料依然无法应用于一些具有复杂构型的结构。近年来,3D打印技术的快速发展有望实现复杂几何形状复合材料结构的有效制造,从而进一步拓展复合材料的应用范围。连续纤维增强复合材料3D打印技术的成熟应用对于中国高端装备的制造具有重要意义。从力学性能角度出发,对3D打印连续纤维增强复合材料的研究现状进行综述分析,重点分析了打印温度、打印层厚度、增强纤维类型、材料堆叠方式、纤维体积含量、打印扫描间距等工艺参数对复合材料力学性能的影响机制;讨论了3D打印复合材料在典型载荷下的力学性能及损伤演化规律,明确了影响/制约其力学性能的主要原因;介绍了3D打印复合材料的强度/刚度分析预测方法,并对研究发展趋势进行了总结和展望。  相似文献   

7.
增材制造——面向航空航天制造的变革性技术   总被引:1,自引:0,他引:1  
增材制造技术在航空航天应用方面具有单件小批量的复杂结构快速制造优势,未来将向着设计、材料和成形一体化方向发展。分析了增材制造在航空航天领域应用发展的3个层面,以航空发动机涡轮叶片增材制造、高性能聚醚醚酮(PEEK)及其复合材料、连续纤维增强树脂复合材料及太空3D打印为主题,介绍了增材制造技术国内外以及西安交通大学的研究状况。涡轮叶片应用增材制造工艺可以有效提高效率降低成本,未来向高性能的高温合金和陶瓷基复合材料增材制造技术发展。高性能轻质聚合物PEEK及其复合材料增材制造在高力学性能结构件、吸波功能件的成形中得到应用,将改变现有的设计与材料,推动结构与功能一体化发展。连续纤维复合材料增材制造将带动无模具纤维复合材料成形的新发展,在太空3D打印将改变未来航空航天制造模式。增材制造技术将给航空航天制造技术带来变革性发展。  相似文献   

8.
高性能纤维增强树脂基复合材料3D打印及其应用探索   总被引:1,自引:0,他引:1  
纤维增强树脂基复合材料具有优异的力学性能,能够实现轻质、高性能结构的制造,但传统的成型工艺过程复杂、成本高,难以实现纤维回收利用,限制了纤维增强树脂基复合材料的广泛应用.3D打印技术是一种新兴的零件成形工艺,将3D打印技术应用于纤维增强树脂基复合材料的制造,为实现复合材料低成本、绿色制造提供了可能性.综述了纤维增强树脂基复合材料3D打印技术研究的发展现状,提出了一种高性能连续纤维增强热塑性复合材料3D打印工艺及其回收再制造策略.  相似文献   

9.
电磁功能结构(EFS)因其结构复杂性与种类多样性,导致传统制造工艺难以完全满足未来电磁功能结构的制造需求。为此,3D打印技术作为一种可适用于复杂镂空结构高精高效、低成本的先进数字化技术,受到了研究学者的广泛关注与探索。本文主要围绕3D打印电磁功能结构制造技术,开展了相关新技术、新材料、新结构以及新工艺等方面的系统性调研,总结了现有3D打印电磁功能结构研究面临的挑战。  相似文献   

10.
目前,3D打印技术在各行业得到了广泛的应用,探讨和研究3D打印技术在空空导弹中的应用具有重要的意义.简要介绍了3D打印技术概念、原理和材料,重点介绍了水冷板进行3D打印加工过程,打印成功的水冷板通过检验、加工、装配,满足结构设计要求.3D打印能够缩短水冷板加工周期,降低加工成本.  相似文献   

11.
4D打印是实现对智能材料的增材制造技术。本文基于复合材料、形状记忆聚合物、形状记忆合金等材料简要综述了4D打印智能材料的研究进展。目前复合材料的4D打印向着多材料精确复合、响应速度快、成形材料功能化等方向发展;4D打印形状记忆聚合物则朝着形态可控、实现特定动作等方向发展;4D打印形状记忆合金,目前向着相转变行为精确调控、变形可控等方向发展。由于目前4D打印形状记忆合金存在诸多未解决的问题,本文提出了获得近全致密4D打印形状记忆合金需考虑的因素;成形孔隙对其综合性能的影响;组织性能调控;变形控制;性能指标调节的冗余度问题;需要突破的科学问题等相关思考。总体而言,随着新型原材料、成形方法、控制软件和机器精度的不断发展,4D打印技术发展迅速,正逐步走向智能化、精确化和高效化。  相似文献   

12.
随着计算机技术的飞速发展,3D打印(增材制造/快速成形)技术基于分层制造原理,采用材料逐层累加的方法,直接将数字化模型制造为实体零件,在多个领域具有广泛的应用前景。3D打印技术与传统加工各有千秋,3D打印与数控加工、铸锻造及模具制造等传统加工手段相结合,正在成为新产品快速成形与制造的方法之一。在民机制造领域,3D打印生产的零件,尤其是金属成形件,需要进一步的后处理(如热处理)才能投入生产使用。对于特定金属材料的3D打印成形零件,形状可以优化控制,并且结构静力性能可与铸锻件媲美。但是,由于无损检测能力的限制,3D打印零件内部孔隙度和微裂纹不可预测。对3D成形件的认识程度相比于传统加工还有较大差距,在民机应用中还有较长的路需要走。  相似文献   

13.
增材制造(3D打印)分类及研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
增材制造(3D打印)近年来被国内外广泛研究和应用,但是目前尚无关于增材制造的系统、清晰和准确的分类。根据文献调研和现场调研,将增材制造技术分别按照制造材料种类、形态、热源、工艺组合等方法来进行划分,即增材制造技术可分为四大类16个小类,并且分别介绍各类增材制造技术原理、特点及其研究应用现状。最后指出目前增材制造材料单一与效率低等不足及向多元化、高效化、稳定化和包容化等发展的趋势。  相似文献   

14.
聚合物前驱体转化法可使用聚合物的成型加工工艺实现陶瓷材料的加工制备,在高性能陶瓷和复合材料制备方面显示出独特的优势。3D打印技术在陶瓷前驱体成型中的应用为制备复杂结构陶瓷制件提供了全新的可能。本文从3D打印硅基陶瓷前驱体树脂体系、打印技术及其应用等方面,系统总结了近年来3D打印制备SiCO、SiCN、SiC及含B、Zr等元素硅基陶瓷材料前驱体的研究进展,并进一步指出了3D打印陶瓷前驱体面临的挑战与研究方向。  相似文献   

15.
石墨烯增强树脂基复合材料密度低,具有优良的电磁波吸收性能,是极具应用前景的雷达隐身吸波材料,传统的石墨烯吸波复合材料制备工艺复杂,难以灵活制备复杂结构。超材料作为一种人工电磁介质,以材料自身电磁特性为基础,通过单胞结构设计,可实现高性能超材料微波吸收结构(MetaMaterial Absorber,MMA)的设计,利用3D打印技术复杂结构零件快速成型的优势,可实现树脂基MMA功能结构一体化制造。综述了石墨烯增强树脂基复合材料、3D打印超材料吸波性能的研究进展,提出一种基于木堆结构的3D打印石墨烯增强聚乳酸复合材料梯度超材料吸波结构,该结构在4.5~40GHz频段内,具有35.5GHz的超宽频带微波吸收性能(反射损耗低于–10dB)。  相似文献   

16.
介绍了3D打印技术的发展概况、基本原理和技术特点。综述了国内外几种常用的钛合金3D打印技术:激光选区烧结成形技术(SLS)、激光选区熔化成形技术(SLM)、激光立体成形技术(LSF)、电子束选区熔化成形技术(EBSM)、电子束熔丝沉积成形技术(EBF3)等,综合比较,EBSM技术由于具有成形效率高、精度高、成本低和真空无污染等优点,是未来最具发展前景的钛合金3D打印技术。成形过程中缺陷的成因和检测是3D打印领域重要研究热点,也是3D打印件能否实现应用的基础。重点介绍了钛合金3D打印成形过程中主要缺陷(包括球化现象、裂纹、孔隙以及翘曲变形)的分类、危害和成因,以及3D打印件常用的无损检测技术,并结合国内外研究情况对各种缺陷的抑制或改善方法进行探讨。最后,从材料、设备、工艺和检测技术方面,对未来钛合金3D打印技术发展前景进行了展望。  相似文献   

17.
空间3D打印技术对航天器维护及深空探测具有重要意义。结合金属材料3D打印技术的特点及空间的微重力环境,从热源适应性、材料适应性、成形工艺适应性等方面探讨了金属空间3D打印所面临的困难。在此基础上,提出了空间3D打印宜选取电子束或激光为热源、丝材为原料的技术方案,并简述了目前国际上3D打印技术在微重力环境下金属材料制备方面的研究现状,分析了微重力条件下金属材料凝固时气孔等凝固缺陷的形成及元素偏析行为。围绕空间站建设和载人深空探测需求,讨论了金属材料空间3D打印在空间站自我修复及金属构件在轨制备等方面的应用前景。  相似文献   

18.
3D打印机又称Rapid Prototype (简称RP),是“快速原型制造技术”具体的运用. Stratasys两种先进 3D打印技术 Stratasys创始人Scott Crump于20多年前发明了热溶解积层技术(Fused Depositong Madeling,FDM),自此Stratasys 3D打印技术走在变革的前沿.FDM使用两种材料来执行打印作业:用于构成成品的建模材料和用作支架的支撑材料.3D打印机的FDM(热熔沉积成型法)技术原理上并不会太艰深困难,传统制造业的加工方法是在原始材料上做切销的减法,与之不同,3D打印所遵行的是加法堆栈的原则.比起传统的模型制作,不但避免错误,而且可以节省大量的开发时间成本与材料成本.  相似文献   

19.
<正>在生产制造领域,3D打印是一种非常及时高效的零件生产方式,但在航空公司用户看来,将其真正用于维修中的备件生产,还面临一定的困难,如不具备原始设计数据文件、3D打印设备等。现在,解决这些困难的途径之一是区块链技术,它可以提高3D打印件的售后服务效率和知识产权安全性,优化航空航天市场的供应链。  相似文献   

20.
针对复杂构件制造快速原型开发需求,开展了基于数字光投影固化快速成形技术的3D打印关键技术研究,以涡轮盘的打印过程为主线,研究了DLP光固化3D打印的前处理技术、成形工艺参数设计、后处理技术,并对打印成品进行了测量分析。研究结果可为后续进行DLP光固化3D打印工程样件的快速制造提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号