首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The question of attitude control and elastic mode stabilization of a spacecraft (orbiter) with beam-tip-mass-type payloads is considered. A three-axis moment control law is derived to control the attitude of the spacecraft. The derivation of the control moments acting on the spacecraft does not require any information on the system dynamics. The control law includes a reference model and a dynamic compensator in the feedback path. For damping out the elastic motion excited by the slewing maneuver, an elastic mode stabilizer is designed. The stabilization is achieved by modal velocity feedback using force and torque actuators located at the payload end of the elastic beam. Collocated actuators and sensors provide robust stabilization. Simulation results are presented to show that rotational maneuvers and vibration stabilization can be accomplished in the closed-loop systems despite the presence of model uncertainty and disturbance torque in the system  相似文献   

2.
崔祜涛  程小军 《航空学报》2013,34(3):644-654
 研究了非零初始整星角动量下两飞轮驱动航天器姿态机动控制问题,针对在两飞轮旋转轴平面外某一视线轴的指向控制,给出了目标姿态生成算法和一种抗输入饱和的视线轴指向滑模控制算法。首先,通过对两飞轮驱动航天器静止时的可行姿态进行分析,给出了视线轴指向目标方向的必要条件。然后,基于该条件得到了使视线轴与目标方向偏差最小的目标姿态。最后,对状态方程进行降维和线性化处理,设计了一种抗输入饱和的视线轴指向滑模控制算法。仿真结果展示了本文算法的可行性和有效性。  相似文献   

3.
The AFAST project (Autonomously Feature And Star Tracking) at the Jet Propulsion Laboratory, California Institute of Technology is engaged in the attitude determination and tracking of the CCD camera pointing direction on future spacecraft missions. Ground based attitude determination is time-consuming and costly. This implies that the attitude determination and the tracking of the pointing direction must be autonomous and rely exclusively on the CCD sensor. Also, distant observations call for autonomy, as relay times to Earth make ground control infeasible. This paper presents a strategy to track the pointing direction on planetary terrains. The strategy utilizes multiple closed contours in a planetary image. It accomplishes tracking by recognizing a constellation of the closed contours. The strategy is adaptable to both spacecraft and missile applications  相似文献   

4.
《中国航空学报》2021,34(4):293-305
This paper addresses the challenge of synchronized multiple spacecraft attitude reorientation in presence of pointing and boundary constraints with limited inter-spacecraft communication link. Relative attitude pointing constraint among the fleet of spacecraft has also been modeled and considered during the attitude maneuvers toward the desired states. Formation fling control structure that consists of decentralized path planners based on virtual structure approach joint with discrete time optimal local controller is designed to achieve the mission’s goals. Due to digital computing of spacecraft’s onboard computer, local optimal controller based on discrete time prediction and correction algorithm has been utilized. The time step of local optimal algorithm execution is designed so that the spacecraft track their desired attitudes with appropriate error bound. The convergence of the proposed architecture and stability of local controller’s tracking error within appropriate upper bound are proved. Finally, a numerical simulation of a stereo imaging scenario is presented to verify the performance of the proposed architecture and the effectiveness of the algorithm.  相似文献   

5.
使用变速控制力矩陀螺的航天器鲁棒自适应姿态跟踪控制   总被引:4,自引:1,他引:3  
刘军  韩潮 《航空学报》2008,29(1):159-164
 研究以变速控制力矩陀螺群(VSCMGs)为执行机构的航天器姿态跟踪问题。采用四元数描述姿态, 在姿态误差的描述中引入了现时姿态与期望姿态之间的方向余弦矩阵。考虑执行机构模型参数不确定和有外干扰的情况, 姿态误差动力学方程为多输入多输出(MIMO)的非线性系统。基于Lyapunov理论设计了鲁棒自适应控制器, 运用光滑投影算法避免了估计参数陷入奇异。仿真结果表明, 设计的鲁棒自适应控制律明显地缩小了姿态跟踪误差, 很好地解决了外部环境干扰和执行机构由于安装误差或机械磨损造成的轴承方向未对准的问题。  相似文献   

6.
The following topics are dealt with: orbit determination; attitude control; spacecraft sensors; control torque; and redundancy management  相似文献   

7.
采用高精度卫星导航速度、位置信息以及星敏感器提供的姿态信息设计十表冗余捷联惯组的标定模型,包含陀螺和加速度计的零次项和标度因数,对卫星和星敏感器辅助的冗余激光陀螺捷联惯组进行实时在轨标定.利用标准Kalman滤波和Sage-Husa自适应滤波作为估计算法,对十表冗余捷联惯组参数进行在线估计.数值仿真结果表明:参数标定精度均在7%以内,是一种实时的在轨标定方法,满足误差补偿要求.冗余惯组在轨标定方法为航天器高精度定姿和定轨提供了一种理论参考.  相似文献   

8.
A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm on condition that there is parametric uncertainty in the measurement model. The weighting matrix of the residual norm is designed to minimize the upper bound of the estimation error variance. The performance of the proposed attitude determination robust filter is illustrated with the use of real test data from a real three-floated gyroscope. Simulation results demonstrate that the attitude estimation accuracy is improved by using the proposed algorithm.  相似文献   

9.
A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.  相似文献   

10.
研究了一种星敏感器一陀螺组合定姿方式中的姿态敏感器误差的实时在轨标定方法。首先,选择直观的欧拉角作为姿态描述参数,根据星敏感器和陀螺的测量原理建立星敏感器一陀螺在轨标定的测量方程和状态方程,并以此建立数学模型。其次,采用简单高效的EKF(ExtendedKalmanFilter,扩展卡尔曼滤波)作为估值算法,进行了在轨标定数值仿真。对于航天器姿态定向中出现的姿态角和星敏感器安装角之间的耦合问题,通过在特定姿态通道上施加简单姿态机动实现了解耦。数值结果表明,该实时在轨标定方法,尤其是所提出的姿态角和星敏感器安装角解耦策略,可以实现对航天器姿态的实时精确估计以及对星敏感器安装误差、陀螺常值漂移和相关漂移等误差的实时在轨标定。该方法可用于航天器姿态测量设备的实时在轨标定和航天器姿态的高精度实时确定。  相似文献   

11.
《中国航空学报》2021,34(10):191-209
There exists an increasing need for precision measurement & pointing control and extreme motion stability for current and future space systems, e.g., Ultra-Performance Spacecraft (UPS). Some notable technologies of realizing Ultra-Pointing (UP) ability have been developed particularly for Ultra-accuracy Ultra-stability Ultra-agility (3U) spacecraft over recent decades. Usually, Multilevel Compound Pointing Control Techniques (MCPCTs) are deployed in aerospace engineering, especially in astronomical observation satellites and Earth observation satellites. Modern controllers and/or algorithms, which are a key factor of MCPCTs for 3U spacecraft, especially the jitter phenomena that commonly exist in a UPS Pointing Control System (PCS), have also been effectively used in some UP spacecraft for a number of years. Micro-vibration suppression approaches, however, are often proposed to deal with low-level mechanical vibration or disturbance in the microgravity environment that is common for UPS. This latter approach potentially is one of the most practical UP techniques for 3U tasks. Some emerging advanced Disturbance-Free Payload (DFP) satellites that exploit the benefits of non-contact actuators have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of UP technologies and/or methods which have been developed, mainly over the last decade, specifically for or potentially could be used for 3U spacecraft pointing control. The problems discussed in this paper are of reference significance to UPS and millisecond optical sensors, which are involved in Gaofeng Project, deep space exploration, manned space flight, and gravitational wave detection.  相似文献   

12.
基于联邦卡尔曼滤波的测量船导航信息处理方法   总被引:1,自引:0,他引:1  
为了提高航天测量船导航系统提供的位置、姿态及速度的精度,以满足飞行器测控的特殊要求,从信息融合的角度进行分析,针对多传感器信息融合技术在工程中的应用作进一步探讨,提出了基于信息融合技术的组合导航方案,构造了INS/CNS/GPS/DVL组合导航系统滤波体系结构,构建了误差模型,阐述了融合算法。仿真及实测数据证明,设计的联邦滤波器可以充分利用各种冗余信息,提高导航的数据精度。  相似文献   

13.
基于中继卫星星间天线对用户航天器的跟踪规律,建立了准确的误差传递模型,并对分析结果进行了仿真验证。文中首先定义了误差传递模型所需的各类坐标系;然后使用微分方法分别建立了中继卫星轨道误差传递模型、中继卫星姿态误差传递模型,分析了滚动角、俯仰角和偏航角与指向精度之间的关系,以及位置保持控制对指向精度的影响;最后借助于STK软件的轨道计算功能,使用蒙特卡罗方法进行数学仿真,仿真结果验证了误差传递模型的准确性。  相似文献   

14.
自主导航是航天器自主运行的核心关键技术。状态估计是实现航天器自主导航的核心手段,是指实时确定航天器在轨位置、速度和姿态等导航参数,是航天器自主导航技术的重点发展方向之一。首先,针对航天器自主导航的实际需求,阐述了研究航天器自主导航状态估计方法的必要性,具体从导航系统可观测性分析、导航滤波算法、导航系统误差补偿3个方面介绍了航天器自主导航状态估计方法的研究现状;然后,分析并总结状态估计方法在航天器自主导航系统中的实际应用;最后,结合理论研究和实际应用,给出了状态估计方法目前存在的主要问题并对其后续发展进行了展望。  相似文献   

15.
星敏感器作为目前航天器中最重要的姿态测量敏感器,其精度直接影响航天器姿态测量精度,因此对其误差源进行分析和修正则尤为重要。提出了一种星敏感器在轨光行差修正方法,根据光行差产生的原理和特点,将星敏感器沿探测器X和Y方向产生的光行差误差角巧妙地转换为光行差误差四元数,并直接对输出四元数进行修正,从而为修正星敏感器光行差提供了一种方便简洁的方法。  相似文献   

16.
‘‘Tian Tuo 1'(TT-1) nano-satellite is the first single-board nano-satellite that was successfully launched in China. The main objective of TT-1 is technology demonstration and scientific measurements. The satellite carries out the significant exploration of single-board architecture feasibility validation, and it is tailored to the low-cost philosophy by adopting numerous commercialoff-the-shelf(COTS) components. The satellite is featured with three-axis stabilization control capability. A pitch bias momentum wheel and three magnetic coils are adopted as control actuators.The sun sensors, magnetometers and a three-axis gyro are employed as the measurement sensors.The quaternion estimator(QUEST) and unscented Kalman filter(UKF) method are adopted for the nano-satellite attitude determination. On-orbit data received by ground station is conducted to analysis the performance of attitude determination and control system(ADCS). The results show that the design of ADCS for TT-1 is suitable, robust and feasible.  相似文献   

17.
The problem of Earth-pointing attitude control for a spacecraft with magnetic actuators is addressed and a novel approach to the problem is proposed, which guarantees almost global closed loop stability of the desired relative attitude equilibrium for the spacecraft. Precisely, a proportional derivative (PD)-like state feedback control law is employed together with a suitable adaptation mechanism for the controller gain. Simulation results are presented, which illustrate the performance of the proposed control law  相似文献   

18.
Missile terminal guidance seekers that employ optical, infrared, or radar sensors to acquire, lock-on, and track their target are subject to a missile-to-target line-of-sight pointing error during the acquisition phase. The error is due primarily to missile navigation errors (attitude and position) and inaccuracies in predicting the target location. The computational process to obtain the seeker-to-target pointing vector is formulated. Linear perturbation ion of the pointing vector yields the pointing-angle error tions.quaons. A simple quantitative example is given.  相似文献   

19.
A high-precision attitude determination and control of the forthcoming European Gaia satellite is an essential task for the success of the whole mission. The requirements for the spacecraft’s attitude require exceptional efforts in the simulation of the rotations of the satellite under the influence of continuous and randomly arising effects. This paper describes the structure of a physically-motivated noise model for simulating the attitude in a closed loop configuration. It deals with the analysis of the most important disturbing forces and torques acting on the Gaia spacecraft.  相似文献   

20.
《中国航空学报》2021,34(3):25-38
The attenuation of spatially evolving instability Tollmien-Schlichting (T-S) waves in the boundary layer of a flat plate with zero pressure gradients using an active feedback control scheme is theoretically and numerically investigated. The boundary layer is excited artificially by various perturbations to create a three-dimensional field of instability waves. Arrays of actuators and sensors are distributed locally at the wall surface and connected together via a feedback controller. The key elements of this feedback control are the determination of the dynamic model of the flat plate boundary layer between the actuators and the sensors, and the design of the model-based feedback controller. The dynamic model is established based on the linear stability calculation which simulates the three-dimensional input-output behaviour of the boundary layer. To simplify the control problem, an uncoupled control mode of the dynamic model is made to capture only those dynamics that have greatest influences on the input-output behaviour. A Proportional-Integral-Derivative (PID) controller, i.e. a lead-lag compensator, combining with a standard Smith predictor is designed based on the system stability criterion and the specifications using frequency-response methods. Good performance of the feedback control with the uncoupled control mode is demonstrated by the large reduction of the three-dimensional disturbances in the boundary layer. This simple feedback control is realistic and competitive in a practical implementation of T-S wave cancellation using a limited number of localised sensors and actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号