首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A newly formed neutron star in a supernova finds itself in a dense environment, in which the gravitational energy of accreting matter can be lost to neutrinos. For the conditions in SN 1987A, 0.1M may have fallen back onto the central neutron star on a timescale of hours after the explosion, after which the accretion rate is expected to drop sharply. Radiation is trapped in the flow until the mass accretion rate drops to 2×10–4 M yr–1 at which point radiation can begin to escape from the shocked envelope at an Eddington limit luminosity. Between this neutrino limit and the Eddington limit, 3×10–8 M yr–1, there are no steady, spherical solutions for neutron star accretion. SN 1987A should have reached the neutrino limit within a year of the explosion; the current lack of an Eddington luminosity can be attributed to black hole formation or to a clearing of the neutron star envelope. There is no evidence for newly formed neutron stars in supernovae. Radio supernovae, which were initially interpreted as pulsar activity, probably involve circumstellar interaction; SN 1993J shows especially good evidence for outer shock phenomena.  相似文献   

2.
Nearby supernovae like SN 1987A and SN 1993J provide valuable constraints on the late evolution of massive stars. For this purpose, we review evolutionary models for the progenitor of SN 1987A and confront them with five observational/theoretical tests we devised. We show that single-star models (with the possible exception of rapid-rotation models) fail at least two of these tests, while two binary models (accretion and merger models) are consistent with all available constraints. We conclude that it is most likely that the progenitor of SN 1987A had a binary companion, either at the time of the explosion or at least in the not-too-distant past, and that SN 1987A should therefore not be used to calibrate single stellar evolution theory. For SN 1993J, we infer from the presupernova photometry and the early light curve that its progenitor was a 15M star that lost almost all of its hydrogen-rich envelope prior to the supernova. This seems to require that the progenitor underwent stable case C mass transfer. We discuss future observational tests of binary models for both supernovae.  相似文献   

3.
4.
Fields  B.D.  Mathews  G.J.  Schramm  D.N. 《Space Science Reviews》1998,84(1-2):219-224
We describe the formation of hot intergalactic gas along with baryonic remnants in galaxy halos. In this scenario, the mass and metallicity of the hot intracluster and intragroup gas relates directly to the production of baryonic remnants during the collapse of galactic halos. We construct a schematic but self-consistent model in which early bursts of star formation lead to a large remnant population in the halo, and to the outflow of stellar ejecta into the halo and ultimately the Local Group. We consider local as well as high redshift constraints on this scenario. This study suggests that the microlensing objects in the Galactic halo may predominantly be 0.5M white dwarfs, assuming that the initial mass function for early star formation favored the formation of intermediate mass stars with m 1M. However, the bulk of the baryonic dark matter in this scenario is associated with the ejecta of the white dwarf progenitors, and resides in the hot intergalactic medium.  相似文献   

5.
Taking as example a 60M star of solar metallicity, the state of the art of model calculations for very massive, from the main sequence to the supernova stage, is reviewed. It is argued that — due to the simple internal structure of Wolf-Rayet stars — the post main sequence evolutionary phases are currently those which are better understood. A brief discussion of the supernova outcome from very massive stars is given. Then, the more uncertain main sequence evolution is discussed. A first attempt to incorporate results about pulsational instabilities of very massive stars in stellar evolutionary calculations is performed. On its basis, a new type of evolutionary sequence for very massive stars is obtained, namely O-star → Of-star → H-rich WNL → LBV → H-poor WNL → WNE → WC → SN. This scenario is shown to correspond better to many observed properties of very massive stars than the standard one. It includes a model for the prototype LBV P Cygni.  相似文献   

6.
A supernova (SN) explosion drives stellar debris into the circumstellar material (CSM) filling a region on a scale of parsecs with X-ray emitting plasma. The velocities involved in supernova remnants (SNRs), thousands of km?s?1, can be directly measured with medium and high-resolution X-ray spectrometers and add an important dimension to our understanding of the last stages of the progenitor, the explosion mechanism, and the physics of strong shocks. After touching on the ingredients of SNR kinematics, I present a summary of the still-growing measurement results from SNR X-ray observations. Given the advances in 2D/3D hydrodynamics, data analysis techniques, and especially X-ray instrumentation, it is clear that our view of SNRs will continue to deepen in the decades ahead.  相似文献   

7.
This paper summarizes new data in several fields of astronomy that relate to the origin and acceleration of cosmic rays in our galaxy and similar nearby galaxies. Data from radio astronomy shows that supernova remnants, both in our galaxy and neighboring galaxies, appear to be the sources of most of the accelerated electrons observed in these galaxies. -ray measurements also reveal several strong sources associated with supernova remnants in our galaxy. These sources have -ray spectra that are suggestive of the acceleration of cosmic-ray nuclei. Cosmic-ray observations from the Voyager and Ulysses spacecraft suggest a source composition that is very similar to the solar composition but with distinctive differences in the 4He, 12C,14 N and 22Ne abundances that are the imprint of giant W-R star nucleosynthesis. Injection effects which depend on the first ionization potential (FIP) of the elements involved are also observed, in a manner similar to the fractionization observed between the solar photosphere and corona and also analogous to the preferential acceleration observed for high FIP elements at the heliospheric solar wind termination shock. Most of the 59Ni produced in the nucleosynthesis of Fe peak nuclei just prior to a SN explosion appears to have decayed to 59Co before the cosmic rays have been accelerated, suggesting that the59 Ni is accelerated at least 105 yr after it is produced. The decay of certain K capture isotopes produced during cosmic-ray propagation has also been observed for the first time. These measurements suggest that re-acceleration after an initial principal acceleration cannot be large. The high energy spectral indices of cosmic-ray nuclei show a significant charge dependent trend with the index of hydrogen being -2.76 and that of Fe -2.61. The escape length dependence of cosmic rays from our galaxy can now be measured up to ~300 GeV nucl-1 using the Fe sec/Fe ratio. This escape length is P -0.05 above 10 GeV nucl-1 leading to a typical source spectral index of (2.70±0.10) -0.50 = -2.20 for nuclei. This is similar to the source index of -2.3 inferred for electrons within the errors of ±0.1 in the index for both components. Spacecraft measurements in the outer heliosphere suggest that the local cosmic-ray energy density is ~2eV cm-3 – larger than previously assumed. Gamma-ray measurements of electron bremsstrahlung below 50 MeV from the Comptel experiment on CGRO show that fully 20–30% of this energy is in electrons, several times that previously assumed. New estimates of the amount of matter traversed by cosmic rays using measurements of the B/C ratio are also higher than earlier estimates – this value is now ~10 g cm-2 at 1 GeV nucl-1. Thus altogether cosmic rays are energetically a more important component of our galaxy than previously assumed. This has implications both for the types of sources that are capable of accelerating cosmic rays and also for the role that cosmic rays may play in ionizing the diffuse interstellar medium.  相似文献   

8.
Bursts of massive star formation can temporarily dominate the luminosity of galaxies spanning a wide range of morphological types. This review is concerned primarily with such events in the central 1 kpc region of spiral galaxies which result from bar driven inflows of gas triggered by interactions or mergers. Most of the stellar radiant luminosity of such bursts is absorbed by dust and re-emitted in the far-infrared and is accompanied by radio and X-ray emission from supernova remnants which can also act collectively to drive galaxy scale outflows. Both evolutionary stellar models and estimates of the gas depletion times are consistent with typical burst durations of 107–8 yr. Spatially-resolved studies of nearby starburst galaxies reveal that the activity is distributed over many individual star forming complexes within rings and other structures organized by interactions between bars and the disc over a range of scales. More distant and extreme examples associated with mergers of massive spirals have luminosities > 1013 L and molecular gas masses > 1010 M implying star formation rates > 1000 M yr–1 which can only be sustained for 107 yr. In the most luminous merging systems, however, the relative importance of starburst and AGN activity and their possible evolutionary connection is still a hotly debated issue. Also controversial are suggestions that starbursts in addition to a black hole are required to account for the properties of AGNs or that starbursts alone may be sufficient under certain conditions. In a wider context, starbursts must clearly have played an important role in galaxy formation and evolution at earlier times. Recent detections of high redshift galaxies show that star formation was underway at z 4 but do not support a continuing increase of the strong evolution in the co-moving star formation density seen out to z l. Primeval starburst pre-cursors of spheroidal systems also remain elusive. The most distant candidates are radio galaxies and quasars at z = 4–5 and a possible population of objects responsible for an isotropic sub-mm wave background tentatively claimed to have been detected by the COBE satellite.  相似文献   

9.
Certain meteoritical inclusions contain evidence for the existence of short-lived radioactivities such as 26Al and 41Ca at the time of their formation 4.566 billion years ago. Because the half-lives of these nuclides are so short, this evidence requires that no more than about a million years elapsed between their nucleosynthesis and their inclusion in cm-sized solids in the solar nebula. This abbreviated time span can be explained if these nuclides were synthesized in a stellar source such as a supernova, and were then transported across the interstellar medium by the resulting shock wave, which then triggered the gravitational collapse of the presolar molecular cloud core. Detailed 2D and 3D numerical hydrodynamical models are reviewed and show that such a scenario is consistent with the time scale constraint, and with the need to both trigger collapse and to inject shock-wave matter into the collapsing protostellar cloud and onto the protoplanetary disk formed by the collapse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in \(\beta^{+}\)-decays, as e.g. from \(^{26}\mbox{Al}\), \(^{44}\mbox{Ti}\), \(^{56,57}\mbox{Ni}\) and possibly further isotopes of their decay chains (in competition with the production of \(e^{+}e^{-}\) pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the \(^{55}\mbox{Mn}\) puzzle), plus (d) further constraints from galactic evolution, \(\gamma\)-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.  相似文献   

11.
A two dimensional hydrodynamic study indicates that convectively unstable gradients which develop during core collapse and bounce give rise to large scale core overturn. It is also shown that the concomitant release of neutrini can deposit large amounts of energy and momentum in the infalling envelope and give rise to a powerful supernova explosion.  相似文献   

12.
The evolution of massive stars   总被引:1,自引:0,他引:1  
The evolution of stars with masses between 15 M 0 and 100M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution.The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities.Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15M 0 and a 25M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed.The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface.The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed.The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined.Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss.  相似文献   

13.
Theoretically predicted evolutionary phases of massive close binaries are compared with the observations. For the evolution up to the High-Mass X-ray Binary (HMXB) phase there is fair agreement between theory and observation. Beyond the HMXB phase there is much uncertainty. Notably it is puzzling why we observe so few systems consisting of a helium star and a neutron star (Cygnus X-3 is the only one found so far), and why the incidence of double neutron stars is so low. A better understanding of Common Envelope evolution is required in order to answer these questions. The role of velocity kicks imparted to neutron stars during supernova collapse is discussed. Such kicks might cause many runaway OB stars to be single.  相似文献   

14.
The COMPTEL telescope aboard the Compton Gamma Ray Observatory has put MeV -rays into the midst of astronomy. Among recent highlights are the discovery of intense MeV emission from blazar-type active galactic nuclei, the surprising non-detection of any Seyfert galaxy at MeV energies, the first image of the Milky Way in the light of the26Al line at 1.809 MeV (possibly including a detection of the Vela supernova remnant), the discovery of 3–7 MeV emission from the Orion complex, which can be identified with nuclear interaction lines of12C and16O at 4.44 and 6.13 MeV, the detection of the44Ti line at 1.15 MeV from the supernova remnant Cas A, and the first results on the spectrum and propagation of low-energy (1–100 MeV) cosmic-ray electrons.also Leiden Observatory  相似文献   

15.
A number of young supernova remnants (SNRs) are now known to have nonthermal X-ray spectra. The steepness of the X-ray emission suggests that it is synchrotron from TeV electrons, and if this is the case, efficient shock acceleration is likely occurring in these objects. Here we use a model of nonlinear diffusive shock acceleration to fit the broad-band emission from SN1006, Tychos, and Keplers SNRs. Our fits confirm that all of these SNRs are producing TeV particles, but also show that the electron and ion spectra do not extend as a power law above a few TeV, well below the cosmic ray `knee at 1015 eV.  相似文献   

16.
We review the possible evolutionary paths from massive stars to explosive endpoints as various types of supernovae associated with Population I and hence with massive stars: Type II-P, Type II-L, Type Ib, Type Ic, and the hybrid events SN 1987K and SN 1993J. We identify SN 1954A as another hybrid event from the evidence for both H and He in its spectrum with velocities nearly the same as SN 1983J. Evidence for ejected56Ni mass of 0.07 M suggests that SN II-P underwent standard iron core collapse, not collapse of an O–Ne–Mg core nor thermonuclear explosion of a C–O core. Most SN II-P presumably arise in single stars or wide binaries of 10–20 M. There may be indirect evidence for duplicity in some cases in the form of strong Ba II lines, such as characterized SN 1987A. SN II-L are recognizably distinct from typical SN II-P and must undergo a significantly different evolution. Despite indications that SN II-L have small envelopes that may be helium enriched, they are also distinct from events like SN 1993J that must have yet again a different evolution. The SN II-L that share a common Luminosity seem to have ejected a small nickel mass and hence may come from stars with O–Ne–Mg cores. The amount of nickel ejected by the exceptionally bright events, SN 1980K and SN 1979C, remains controversial. SN Ib require the complete loss of the H envelope, either to a binary companion or to a wind. The few identified have relatively large ejecta masses. It is not clear what evolutionary processes distinguish SN Ib's evolving in binary systems from hybrid events that retain some H in the envelope. SN Ic events are both H and He deficient. Binary models that can account for transfer of an extended helium envelope from low mass helium cores, 2 to 4 M, imply C–O core masses that are roughly consistent with that deduced from the ejecta mass plus a neutron star, 2 to 3 M. It is possible that the hybrid events are the result of Roche lobe overflow and that the pure events, SN Ib or SN Ic, result from common envelope evolution.  相似文献   

17.
Summary A multi-year photometric program on long-period eclipsing binaries has begun to uncover some properties of accretion disks in these systems. Emission and transmission properties can sometimes be found from light curve features produced by partial eclipses of the disk by the cool star, and by partial occultations of the cool star by the disk. These disks do not have the classical alpha structure. They are optically thin normal to the orbital plane, but may be geometrically thicker than purely gravitationally-stratified disks. Disk gas may be contaminated by dust particles acquired from the outer layers of the cool loser. In some systems, high states, produced by elevated mass accretion by the hot star, occur, suggesting that the mass distribution in the disk is clumpy. However mass-transfer rates are found, they lie between 10-7 and 10-6 solar masses per year.While this binary sample is small at the moment, some of its properties are shared with other systems. The author has five-color observations of about a dozen additional systems, which may fill out this picture more fully.  相似文献   

18.
We review progress in the development of physically realistic three dimensional simulated models of the galaxy. We consider the scales from star forming molecular clouds to the full spiral disc. Models are computed using hydrodynamic (HD) or magnetohydrodynamic (MHD) equations and may include cosmic ray or tracer particles. The dynamical scales covered, ranging from the full galaxy structure, through the turbulent scales of supernova (SN) explosions, down to cloud collapse and star formation, make it impossible with current computing tools and resources to resolve all of these in one model. We therefore consider a hierarchy of models and how they can be related to enhance our understanding of the complete galaxy.  相似文献   

19.
The evolution of an 0.6 m stellar model during core helium burning is presented. Following the off-center ignition of helium in the core flash, the star remains on the red giant branch for > 106 years, undergoing twelve additional flashes. After leaving the giant branch, the star evolves on the horizontal branch for 8.15×107 years before re turning to the giant branch and undergoing strong helium-shell flashes. The implications for horizontal branch and RR Lyrae stars are discussed.  相似文献   

20.
Two contrasting models of the magnetosphere are studied: a classical, quasi-mhd model, in which it is the componentE that accelerates electrons to relativistic energies; and a model with e+-e production, in which the componentE is locally crucial, both in an acceleration domain near the star and in a dissipation domain beyond the light-cylinder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号