首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
采用聚碳硅烷作为前驱体,在800、1000、1200℃下烧结得到SiC基体,研究了温度对SiC基体密度、结晶程度的影响。结果表明基体随着温度的提高,基体密度提高,结晶程度逐渐提高,Si含量比例升高。在800℃时,基体密度为2.30 g/cm^(3),所得基体结构接近无定型态,在1000和1200℃下的密度分别为2.50和2.56 g/cm^(3),晶粒尺寸分别为2.6和4.1 nm。再以聚碳硅烷为前驱体,以碳纤维织物为增强体,采用PIP工艺制备C/SiC复合材料,热解最高温度同样为800、1000、1200℃,得到三组C/SiC复合材料,对复合材料进行了力学性能测试和断口微观结构观察,分析了基体结构对复合材料力学性能的影响。研究结果表明,在一定范围内提高热解温度,有利于改善基体特性和提高复合材料的致密化效率,从而使复合材料的力学性能有所提升,特别是弯曲、层间剪切和压缩性能提高作用明显。  相似文献   

2.
随着科学技术的飞速发展,新型航天装备对防热、承载、多功能材料和结构提出了新的需求,也给C/C复合材料研究和应用带来了新的契机。本文总结了近年来C/C复合材料在超高温防热、高温承载、高导热以及非烧蚀低密度防热等功能及结构实现技术方面的主要进展,讨论了当前存在的主要问题,对未来研究方向提出了发展与展望。  相似文献   

3.
采用针刺及细编穿刺结构分别引入热解碳和沥青碳的多孔C/C坯体,通过反应熔渗工艺(RMI)与熔融金属Zr反应制备了C/C-ZrC复合材料.研究了预制体结构和基体碳类型对C/C-ZrC复合材料微观结构及力学性能的影响.结果 表明:材料熔渗后只由C,ZrC两相组成,孔隙率5%~10%,ZrC质量分数53%~63%.针刺结构的...  相似文献   

4.
研究了一种在C/C复合材料中掺杂难熔金属化合物的新方法:溶胶-凝胶法。利用醋酸锆溶胶对密度为1.39和1.59 g/cm3的C/C复合材料进行浸渍,凝胶化后,再进行炭化处理,在C/C复合材料中引入了难熔金属化合物ZrC。经若干次处理后,两种C/C复合材料的密度最终分别达到1.88和1.86 g/cm3。利用电子背散射测试观察Zr在C/C复合材料中的分布,发现在C/C复合材料表面多次凝胶沉积形成一层Zr的涂层,而在材料的内部Zr的分布主要依赖于材料本身孔洞的分布以及纤维束间的孔隙。对电弧烧蚀后的Zr-C/C复合材料进行表观形貌观察,发现在材料表面形成均匀的ZrO2膜,将基体与氧气隔绝,从而减缓材料的烧蚀速率。  相似文献   

5.
C/C-ZrC复合材料的制备及力学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用基体改性技术将ZrC引入C/C复合材料中,制备了一种C/C-ZrC复合材料.借助X射线衍射仪、扫描电镜及能谱等手段,对材料的微观结构进行了表征,采用三点弯曲试验研究了材料的力学性能,讨论了ZrC的添加对复合材料断裂行为的影响.结果表明:引入的ZrC相在材料中分布较连续,与C/C复合材料相比,ZrC的引进使得复合材料的弯由强度有所提高,但断裂模式由假塑性变为脆性断裂,其原因与材料中碳纤维与基体较强的界面结合有关.  相似文献   

6.
C/C复合材料在再入模拟环境中烧蚀性能研究   总被引:1,自引:1,他引:1       下载免费PDF全文
为了研究轴棒法编织的高密度碳/碳(C/C复合材料在再入飞行时的烧蚀性能,采用热等离子体地面模拟再入烧蚀系统对C/C复合材料进行烧蚀试验。试验中分别采用氮气(N、氧气(O和空气作为工作气体,对比研究C/C复合材料在不同环境中的烧蚀率和烧蚀性能。结果表明,三种情况下试样的烧蚀率和微观形貌有很大差异;纯氧气时氧化反应的线烧蚀率和质量烧蚀率分别为0.0423mm/s和0.0451g/s大于纯氮气时氮化反应的0.0314mm/s和0.0338g/s也大于空气成分时复合反应的0.0215mm/s和0.0208g/s在试样烧蚀的热影响区发生轻微开裂;三种工况下的烧蚀机理不同,分别是碳的升华、碳的氧化和碳氮反应的某种组合。  相似文献   

7.
文摘通过在C/C复合材料内部引入添加剂,研制出超高温抗氧化C/C复合材料。结果表明:与纯C/C复合材料对比,超高温抗氧化C/C复合材料的力学性能有不同程度的下降。采用OM、SEM等手段从宏观和微观尺度发现,添加剂对碳纤维造成的化学损伤、添加剂和基体与纤维热物理不相容引起纤维在复合过程中断裂是其中主要因素。  相似文献   

8.
C/ C 复合材料SiC/ SiO2 涂层的制备及其抗氧化性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高C/C复合材料的抗氧化性能,采用包埋法和低压化学气相法制备了SiC/SiO2涂层.借助XRD、SEM和EDS等测试手段分析了复合涂层的微观结构,并研究了其在l273、1773 K静态空气中的抗氧化性能.结果表明,包埋法制备的SiC涂层具有一定的浓度梯度.低压化学气相法制备的非晶Si02外涂层则有效地封堵了SiC内涂层的的裂纹和孔洞,并解决了SiC涂层在中温区(1073~1473 K)无法形成完整SiO2膜的问题.在l 273、1 773 K静态空气中经10h氧化后,涂层试样的质量损失率分别仅有4.97和0.36 mg/cm2,表现出良好的抗氧化性能.  相似文献   

9.
采用热压法制备ZrB2/C复合材料,利用氧乙炔火焰烧蚀法测试材料的质量烧蚀率和线烧蚀率,采用扫描电镜和X射线衍射分析材料的微观结构及物相变化。研究结果表明:和相同工艺制备的纯石墨材料相比,ZrB2的引入降低了炭材料的质量和线烧蚀率,ZrB2的加入量越大,烧蚀率降低幅度越大,ZrB2引入明显提高了炭材料的抗烧蚀性能;通过微观结构分析,探讨了ZrB2形态和含量对复合材料抗烧蚀性能影响的机理,研究结果展示了此材料作为高温烧蚀材料的良好应用前景。  相似文献   

10.
以碳纤维为增强体,聚碳硅烷和聚烷基铪为前驱体,采用前驱体浸渍裂解(PIP)工艺制备C/Si C-HfC复合材料,将其与同种工艺所得C/SiC复合材料进行对比评价分析。发现C/SiC-HfC复合材料具有较低密度和较好的高温力学性能,且在1 650℃静态氧化实验中,含有HfC的基体对纤维具有更佳保护效果。C/SiC-HfC密度约为1.92 g/cm~3,常温弯曲强度为345 MPa,1 800℃高温无氧环境弯曲强度可达424 MPa。C/SiC-HfC复合材料表现出更加优异高温力学性能是由于HfC组分的添加抑制了SiC晶粒的生长,降低了基体内部较大裂纹产生的概率。在1 650℃空气环境下,含有HfC的基体对纤维具有更佳保护作用,主要是由于HfC组分的添加使材料表面的SiC及时氧化成SiO_2,SiO_2在纤维和基体表面形成包覆层,防止了材料内部的进一步氧化。  相似文献   

11.
采用石墨树脂浆料浸渍三维针刺碳毡增强体,热解后得到C/C多孔体,并采用反应熔体浸渗法制备C/SiC复合材料.研究了石墨填料对C/C多孔体的结构以及C/SiC复合材料力学性能的影响.结果 表明,石墨树脂浆料浸渍时树脂填充束间小孔形成结构致密的亚结构单元,而石墨可以有效填充胎网层等大孔隙,一次浸渍热解后碳产率有效提高.所得...  相似文献   

12.
在合金的基础上进一步引入纳米陶瓷颗粒,从而制备出颗粒增强金属基复合材料,是提高金属材料综合性能的重要手段。本文从原位自生TiB_2/Al基复合材料的制备方法、不同加工工艺下复合材料的微观组织、复合材料的力学性能三个方面总结了其研究现状,同时展望了原位自生TiB_2/Al基复合材料的发展方向。通过原位自生方法制备出的TiB_2颗粒增强铝基复合材料具有颗粒尺寸小、与基体界面结合良好等优点。通过合金化设计、热加工塑性变形、快速凝固工艺可进一步改善纳米陶瓷颗粒的分散性。相对于外加法制备的金属基复合材料,原位自生TiB_2/Al基复合材料具有更加优异的力学性能,如弹性模量、强度、抗疲劳性能、抗蠕变性能等。  相似文献   

13.
常见高性能热防护材料的力学性能较为薄弱,这成为了飞行器热防护系统发展的瓶颈。因此,如何设计热防护材料,使其具有良好隔热效果同时兼具足够的承载能力,成为当前的研究热点。本文针对碳/碳多孔防热复合材料进行了单轴压缩实验,获得了其压缩应力—应变曲线,研究了其压缩变形特征及相应的失效模式,并通过SEM观测变形前后的材料细观结构,分析了材料内部的细观变形机制,也为进一步建立表征材料内部细观结构特征的有限元模型和进行数值模拟研究奠定了实验基础。实验结果表明:材料内部纤维主要沿面内随机分布,呈现出明显的分层现象。受其结构的影响,该材料面内方向力学性能比厚度方向优越。  相似文献   

14.
碳/碳复合材料超高温力学性能测试研究   总被引:3,自引:0,他引:3       下载免费PDF全文
超高温力学性能测试系统采用通电的方法对试样进行加热,并利用自行研制的引伸仪解决了变形测量问题。采用此系统对碳/碳复合材料进行超高温测试,获得了3000℃范围内材料拉伸和压缩性能随温度的变化关系,并给出了相应的应力-应变曲线。  相似文献   

15.
分析了X射线CT技术的基本原理和成像模式,综述了X射线CT技术在C/C复合材料的密度测量、孔隙率、孔隙形状和分布等量化表征中的应用。同时介绍了X射线CT图像在C/C复合材料力学性能预测和裂纹扩展规律研究中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号