首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
针对涡轮叶片的蛇形内冷通道内流阻特性的研究,在北京航空航天大学航空发动机气动热力国家级重点实验室的旋转涡轮叶片内冷通道换热实验台上构建了旋转工况的测压系统.该测压系统具有高精度、多路选通、高压高旋转数等特点.在通道进口雷诺数从20 000~70 000,旋转数从0~1.025的范围内,实验研究了旋转状态下,冷态与热态流场下方形截面光滑U形通道流阻系数.实验结果与国外同类实验对比验证了构建的实验系统的可靠性和优越性.实验结果表明:低雷诺数下静止工况的流阻随雷诺数增大而增大,并在雷诺数增大到一定值后转而减小.冷态下流阻随旋转数增大而增大,低旋转数下旋转对热态流阻影响并不显著,高旋转数下热态流阻随旋转数增大而显著增大.  相似文献   

2.
旋转带肋回转通道换热实验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
赵曙  朱惠人  郭涛  许都纯  张丽 《推进技术》2015,36(6):899-906
为深入掌握高压涡轮叶片带肋回转通道在旋转状态下的换热分布,建立了旋转内通道实验系统,利用瞬态液晶测量方法研究了动叶回转内通道模型的换热机理,比较了三维数值模拟和实验的换热结果。通道入口雷诺数为5000~17000,旋转数为0~0.09,旋转半径与水力直径之比为46.4。结果表明:不同雷诺数下回转内通道的局部换热系数分布相似,局部、平均换热系数均随雷诺数增加而增大;沿程展向平均换热系数呈多波峰状分布,肋的扰动强化换热沿流向逐渐减弱;径向出流通道的努赛尔数随旋转数增加明显增大,径向入流通道的努赛尔数随旋转数的增加略有减小;哥氏力使转弯下游通道的局部换热系数改变,肋间的高换热区域由前肋的背风面附近向两肋之间偏移。  相似文献   

3.
温度比对旋转直肋双通道换热特性的影响研究   总被引:1,自引:1,他引:0       下载免费PDF全文
崔欣超  邓宏武  李洋  田淑青 《推进技术》2016,37(11):2009-2016
为了研究旋转涡轮叶片内部冷却通道的换热特性,将叶片内冷通道简化为带90°直肋的旋转双流程方通道,通过旋转加热实验的方式研究了温度比对旋转直肋双通道换热特性的影响。实验进口雷诺数范围为1×104~5×104,旋转数范围为0~2.02,实验平均温度比分别为0.11,0.16,0.20。研究结果表明,与光滑通道实验数据相比,90°直肋削弱了旋转对换热的影响,同时破坏第二通道后缘面附近的不稳定二次流,造成后缘面换热弱于前缘面;温度比是通过改变冷却空气物性与通道内浮升力对旋转通道换内热特性产生影响,温度比的提高引起的物性变化对通道换热具有削弱作用,静止情况下温度比0.20对应的换热与温度比0.11相比,被削弱程度可达16%,而浮升力对换热具有增强作用;低旋转数下,由温度比引起的浮升力作用与物性作用相互中和,高旋转数下温度比的增大对通道换热特性的增强作用更加明显,并且第二通道换热特性受温度比变化影响较第一通道小。  相似文献   

4.
高旋转数下带肋回转通道的换热特性   总被引:1,自引:1,他引:0  
为匹配真实发动机转子叶片的工作条件,将实验回转通道气体压力提高到500kPa以上,使雷诺数和旋转数范围分别扩展到10000~70000和0~2.08.在此基础上通过实验方法研究了高旋转数下带45°倾角斜肋的方形截面回转通道的换热特性.结果表明:回转通道的第1通道前缘面传热系数随旋转数的增大先减小,在达到临界旋转数后换热随旋转数增大而增强;低旋转数下,回转通道的第2通道前后缘面换热差异较小,随着旋转数的增大,前缘面换热始终强于后缘面,这种换热特性与光滑通道完全不同.   相似文献   

5.
杨珂  闻洁  徐国强 《航空动力学报》2016,31(11):2567-2574
应用k-ω SST(shear stress transport)湍流模型,计算分析旋转U型通道在不同进口雷诺数(10000~60000)和高旋转数(0~2.013)范围内的流动与换热特性.结果表明:在静止和旋转状态下,进口雷诺数越大,努塞尔数越大.相比于同一工况下的静止状态,旋转显著增强了径向外流直通道的换热强度,径向内流直通道换热强度增大不明显.旋转数对U型通道换热的影响主要通过改变哥氏力和浮升力的大小.受哥氏力的影响,径向外流直通道后缘面换热增强,前缘面换热减弱.浮升力诱发了近壁面的流动分离,使得径向外流直通道前缘面不同位置处的换热强度随旋转数的增加而先减小后增大,计算得到的临界旋转数变化规律与实验测量结果保持一致,即无量纲距离参数与临界旋转数的乘积为定值.   相似文献   

6.
在雷诺数为25000、旋转数为0.24、密度比为0.07~0.22的范围内,以数值计算的方法模拟了旋转方通道内三维流场及换热分布,与公开文献中的换热实验结果进行的对比表明,低雷诺数k-ω模型的计算结果与实验值吻合得相对较好;重点研究了旋转状态下冷气密度比对通道内流场和换热的影响,分析了哥氏力和浮升力在通道中的交互作用机理,结果表明,哥氏力引发的截面二次流是造成旋转通道前后缘换热差异的主要因素,浮升力加剧了通道内主流型的偏移,同时,其在前缘表面诱发的流体分离改变了局部湍流强度和换热分布。  相似文献   

7.
高旋转数下45°斜肋回转通道平均换热特性研究   总被引:3,自引:3,他引:0       下载免费PDF全文
陈豪  邓宏武  李洋  田淑青 《推进技术》2015,36(9):1339-1346
为了更加深入地研究涡轮叶片回转通道的换热特性,研究了高旋转数下带45°斜肋回转通道的平均换热特性。在通道进口雷诺数从10000~70000,旋转数从0~2.07的范围内,实验研究了旋转状态下,方形截面带45°斜肋U型通道径向出流与径向入流两个流程四个侧面在0°,22.5°和45°三个安装角下的平均换热系数。研究结果表明:45°斜肋增强了通道换热,减弱了旋转对换热的影响;由于浮升力作用在肋间二次流上,导致通道内外侧出现临界回流现象;转角减弱了第一通道旋转对换热的影响,增强了第二通道旋转对换热的影响,其影响在低旋转数下并不显著,在高旋转数下开始变得明显。  相似文献   

8.
高旋转数下不同通道转角带肋回转通道的换热特性   总被引:1,自引:1,他引:0  
王辉  田淑青  邓宏武 《航空动力学报》2015,30(10):2391-2400
提高回转通道气体压力,将实验雷诺数和旋转数范围分别扩展到10 000~70 000和0~2.08,在此基础上实验研究了高旋转数下通道转角为0°,22.5°,45°的带45°倾角斜肋的方形截面回转通道的换热特性.结果表明:在第1通道,通道转角对后缘面换热的影响整体上强于前缘面,尤其是通道入口段位置;在第2通道,通道转角对换热的影响比较小.对于区域平均换热分布,通道转角为45°的通道平均换热最强,通道转角为22.5°的通道次之,通道转角为0°的通道平均换热在3个通道转角中最弱.  相似文献   

9.
针对旋转通道实验,为了获得理想的旋转通道入口湍流度,更好地模拟实际涡轮叶片内冷通道的流动换热,提出了一种入口湍流度控制方法,并通过实验对该方法进行了验证和初步探索.实验中,在边长为40mm×40mm的方形通道中,放置了一层网丝直径d=3mm,网丝间距Mu=12mm的阻尼网,利用热线风速仪,得到了雷诺数为2 200~3 900范围内的阻尼网后下游湍流特性.研究发现:流体通过该阻尼网后,湍流度显著增大并沿流向逐渐衰减,相同点湍流度随阻尼网雷诺数增大而增大,气流在阻尼网后较短距离内就获得了5%的湍流度,这与实际涡轮叶片内冷通道流动湍流度相当;阻尼网雷诺数越小,流动越早进入横向均匀及各向同性湍流;通过经典公式对阻尼网后通道中心湍流度沿流向分布进行拟合,实验数据与曲线拟合较好.  相似文献   

10.
旋转对光滑U形通道内换热的影响研究   总被引:4,自引:5,他引:4  
在通道进口雷诺数从6 100~25 100,旋转数从0~0.26的范围内,实验研究了旋转对光滑U形通道的换热特性的影响.通道长度与水力直径的比值为23,通道平均旋转半径与水力直径的比值为24.结果表明,静止状态下,通道局部努塞尔数随雷诺数增加而增加,但其沿程分布规律基本不变.旋转状态下,第一通道前后缘换热差异随旋转数的增加而增加,在第二通道中正好相反.旋转对第一通道中部转静努塞尔数比的影响最大,而弯道效应则主要影响转弯段及第二通道上游的换热.  相似文献   

11.
为了获得带斜孔肋大宽高比矩形通道的强化传热特性,并寻求最佳的孔排倾斜角度,调节孔排倾斜角度和通道雷诺数,使其分别在0°~30°和3×104~9×104范围内变化,通过数值计算系统分析了通道摩擦因数和带肋壁努塞尔数等参数的变化规律.研究发现:相比于常规肋片,新型斜孔肋有效改善了肋片后方紧邻肋片的局部区域的壁面换热,并降低通道的摩擦因数,但传热增强因子有所减小;随着孔排倾斜角度的增大,通道的相对摩擦因子单调升高,传热增强因子则呈现出先升高后降低的变化过程,因此存在着最优孔排倾斜角度为15°,此时斜孔肋的强化传热综合指标达到最大值;随着通道雷诺数的增大,斜孔肋通道的摩擦因数小幅减小,换热则逐渐增强.   相似文献   

12.
小展弦比机翼加装格尼襟翼的低雷诺数试验   总被引:1,自引:1,他引:0       下载免费PDF全文
通过风洞试验研究了在低雷诺数下加装格尼襟翼的小展弦比机翼气动特性,机翼展弦比为1.67,格尼襟翼为1%~4%弦长高度,试验雷诺数分别为2.0×105和5.0×105.天平测力和表面测压的试验结果表明:低雷诺数下小展弦比机翼加装一定高度的格尼襟翼后,升力系数明显提高,加装1%弦长高度的格尼襟翼还能够提高机翼的升阻比.这是因为在试验雷诺数下,合适高度的襟翼在提高了机翼升力的同时并未显著增大机翼阻力.对比不同试验雷诺数下格尼襟翼的作用效果,表明格尼襟翼能够减少低雷诺数气流分离的不利影响,并且在较小的雷诺数下这种作用更加显著.关于格尼襟翼对低雷诺数层流分离现象的影响,还需要通过细致的流场显示技术进行研究.  相似文献   

13.
为研究截面形状和旋转效应对高压涡轮动叶内部冷却通道换热的影响,对雷诺数为10000~50000,旋转数为0~209,通道转角为0°、225°、45°的带直肋双流程梯形截面通道换热特性进行了实验研究。结果表明:静止状态下,在第一通道,梯形通道后缘换热强于前缘;在第二通道,前、后缘换热区别不大,后缘的换热略强于前缘。旋转状态下,对0°通道转角,随旋转数的增大,第一通道的后缘面换热仍强于前缘面和外侧面,且差异更明显;第二通道前缘换热相对后缘增强。在较高旋转数(旋转数大于1)时,0°通道转角工况的换热最强,45°转角最弱。   相似文献   

14.
狭缝斜肋内冷通道流动和换热特性的数值研究   总被引:1,自引:0,他引:1       下载免费PDF全文
邓贺方  姜玉廷  张建  陆松兵  郑群 《推进技术》2020,41(9):2070-2076
为了探究狭缝斜肋的流动和换热特性,进一步挖掘传统斜肋的性能,采用数值模拟的方法,研究了五种不同位置和倾斜角度的狭缝对45°斜肋流动和换热特性的影响,计算的进口雷诺数为2×104~8×104,并与传统的实心肋进行了对比分析。结果表明,狭缝的存在显著改变了冷却通道的流动结构以及换热分布,降低了冷却通道的阻力损失,减小了通道整体的强化换热系数,但同时增加了肋片表面的强化换热系数,且狭缝的位置和倾斜角度的不同对通道性能也存在一定的影响。对比综合热效率,狭缝斜肋相比实心肋增加了约12%~15%。  相似文献   

15.
侯晓亭  王锁芳  张凯  夏子龙 《推进技术》2020,41(9):2059-2069
为了降低压气机径向引气过程中的压力损失,在设计出新型翅片单元结构的基础上,研究了新型翅片单元结构对径向引气压力损失的影响规律,对不同转速、新型翅片结构的去旋系统开展了数值研究,得到了不同工况下压气机共转盘腔径向引气的流场结构及压力损失分布曲线。研究结构表明:新型翅片单元结构能够抑制盘腔内气流旋流比,降低引气压力损失;翅片单元通道宽度和高度均存在最佳值使得减涡器减阻效果较好,在优选结构翅片单元通道宽度L=0.78,通道高度R3=0.97的条件下,其减阻效果较简单盘腔模型提高86.5%。高低翅片结构能起到较好的减阻效果,随着单侧翅片高度的升高减阻效果逐渐增强,在本文结构下增加单侧翅片高度L1=0.3时减阻效果最优,且A侧或B侧翅片增加带来的减阻效益相同。一方面,最优高低翅片结构其减阻性能相比于简单盘腔模型、典型翅片式减涡器模型以及翅片单元通道宽度L=0.78,通道高度R3=0.97的结构模型分别提高87.5%,29%,7.8%;另一方面,最优高低翅片结构能够减轻翅片单元的质量,具有较高的工程应用价值。  相似文献   

16.
Flow resistance and heat transfer coefficients of typical double wall laminated film cooling configuration within a turbine vane were experimentally studied.The specimen was in large scale,and made of transparent organic glass.Laminated configuration consisted of double wall laminates,pin-fins,staggered arrays of impingement and film holes.The number ratio of impingement holes,pin-fins and film holes was2∶1∶1.Five experiment vanes were installed in static cascade,and experiments were carried out under constant heat flux.Re of internal cooling air in the experiment was from 104 to 2×105,and Re of external fluid was from 105 to 3×105.The experiment results show that flow resistances of front channel and back channel of the vane are in the same level,and both of them decrease as Re of cooling air increases.Nuof front channel is slightly higher than that of back channel.Both of them increase as Re of cooling air increases.And experiment results were obtained from experiment vanes were compared with that obtained from laminated flat plates,and the tendency of the results agrees well.  相似文献   

17.
旋转状态下方形通道内部流场特性热线实验   总被引:5,自引:4,他引:1  
魏宽  陶智  邓宏武  李海旺 《航空动力学报》2016,31(11):2635-2640
为了解决旋转条件下热线技术应用问题并且在此基础上精确测量旋转方形通道内部流场特性,搭建了用于旋转通道流场测试实验平台,采用了两种连线方式对热线进行了标定实验,获得了热线测量旋转通道内部平均速度的相对误差为±6%,对雷诺数和旋转数范围分别是5000~10000和0~0.222的旋转通道流场进行了测量,结果表明:旋转导致速度型整体向后缘面(Y/D=-0.5)偏转,X/D和旋转数越大,速度型偏转越明显;旋转数为0.222时,后缘面附近边界层速度型出现了一个拐点,可能与由哥氏力不稳定性引起的二次流有关.   相似文献   

18.
旋转条件下带出流孔的受限空间内冲击换热   总被引:8,自引:5,他引:3       下载免费PDF全文
徐磊  常海萍  潘金栋 《推进技术》2008,29(2):149-152
以旋转涡轮叶片内部冷却为背景,在旋转条件下对带出流孔的受限空间内冲击换热特性进行了实验研究。在冲击与旋转方向、相反两种情况下,通过改变冲击雷诺数Rej(5 000~10 000)、旋转数Ro(0~0.003 4)、无因次温比(Tw-Tf)/Tw(0.056~0.134)对冲击靶面的平均换热特性进行了研究。研究发现,靶面的换热随冲击雷诺数的增加而变好;旋转对冲击换热的削弱在雷诺数较大时表现更明显;实验参数范围内浮升力对换热的影响较小;离心力、哥氏力等对换热的影响程度与内部空气的流动结构及出流方式有关。  相似文献   

19.
Experiments were conducted on a typical rotor-stator system where air entered through an annular slot at low radius and flowed out of the cavity axially through a rim seal between the rotor and the stator.For the seal in this rotor-stator system,the stationary shroud overlapped the rotating one.Pressure distributions at the stator surface and flow resistance coefficients of the rotor-stator cavity with a maximum gap of 67mm were measured under different dimensionless mass flow rates from 1.32×104 to 4.87×104 with a large range of rotational Reynolds numbers from 0.418×106 to 2.484×106.The results show that pressure on the stator surface decreases with the increase of rotational Reynolds number when the dimensionless mass flow rate is below 1.3×104;when the dimensionless mass flow rate is above 3.034×104,the trend reverses.This is the so-called"pressure inversion effect".However,dimensionless pressure does not show the same changes when rotational dynamic pressure is chosen as the denominator.The resistance coefficient of the rotor-stator cavity is determined by the dimensionless mass flow rate and rotational Reynolds number;for practical application,the resistance coefficient can also be estimated by the turbulent flow parameter in the range of turbulent parameter from 0.1to 1.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号