首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to quantify the relaxation mechanism of CO2(m, nl, p), the vibrational level populations are calculated for a particular test-case: the vibrational relaxation of a CO2N2 mixture along the stagnation streamline in a reentry problem. The N2 species is chosen as a collision partner because it is a component existing in numerous gaseous mixtures (cf. Part. 1). Excitation and deexcitation processes are taken following Nickerson and Herzfeld. The Navier-Stokes code CELHYO for the simulation of hypersonic laminar viscous flows in chemical and thermal nonequilibrium is used with a new one-dimensional approach, reduction of the Navier-Stokes equations along the stagnation streamline. Mass fraction and ‘vibrational temperature’ distributions of every vibrational level, considered as an independent chemical species, are presented for the two different CO2N2 mixture compositions. The validity of the usual assumptions for the vibrational mechanism is examined on the basis of the obtained results.  相似文献   

2.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   

3.
In view of the low H2O abundance in the present Venusian and Martian atmospheres several observations by spacecraft and studies suggest that both planets should have lost most of their water over the early active period of the young Sun. During the first Gyr after the Sun arrived at the Zero- Age-Main-Sequence high X-ray and EUV fluxes between 10 and 100 times that of the present Sun were responsible for much higher temperatures in the thermosphere-exosphere environments on both planets. By applying a diffusive-gravitational equilibrium and thermal balance model for investigating radiation impact on the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by CO2 IR emission in the 15μm band we found expanded thermospheres with exobase levels between about 200 km (present) and 2000 km (4.5 Gyr ago). The higher temperatures in the upper atmospheres of both planets could reach “blow-off” conditions for H atoms even at high CO2 mixing ratios of 96%. Lower CO2/N2 mixing ratio or higher contents of H2O vapor in the early atmospheres could have had a dramatic impact from the loss of atmosphere and water on both planets. The duration of this phase of high thermal loss rates essentially depended on the mixing ratios of CO2, N2, and H2O in the early atmospheres and could have lasted between about 150 and several hundred Myr.  相似文献   

4.
This report estimates the amounts of various constituents that would have to be continually injected by rockets into the upper atmosphere in order to double the worldwide natural concentrations there. Involved in the calculations are: (a) the natural atmospheric abundances of constituents such as H2O, CO2, NO, Na, K, Li, H, etc.; (b) the residence times in various regions of the atmosphere, since these determine how rapidly a constituent will be removed; and (c) the chemical or photochemical stability of a substance exposed to the upper atmosphere environment. It is concluded that a doubling of the CO2, H2O, or NO content would require per year on the order of 103 to 105 Saturn-type rockets, each injecting 100 tons of exhaust above 100 km. On the other hand, a few hundred small rockets per year, each containing 10 kg of the chemical, would probably double the Na content; similarly, less than two such rockets per year would be expected to double the Li content. These last conclusions have implications for future tracer experiments using these substances.The author is now an Associate Director of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. The work reported here was supported by the United States Air Force under Contract AF 49(638)-700 with the RAND Corporation. The views or conclusions contained in this paper should not, however, be interpreted as representing the official opinion of the United States Air Force.  相似文献   

5.
Large underground (underwater) detectors (such as ‘Baikal’ and DUMAND) are discussed for their possible use as gamma-ray telescopes. The signal is caused by high-energy muons (E μ ? 30–100 TeV) produced by the primary gamma-radiation in the Earth's atmosphere. The production of gamma-rays in the source through the reaction p + pπ 0 + X is calculated for a low density target of arbitrary thickness taking the electromagnetic cascade into account. The muon production by gamma-rays in the Earth's atmosphere is calculated using three processes: (i) photoproduction of π- and K-mesons followed by decay to muons, (ii) the direct production of μ+ μ?-pairs: γ + Z → Z + μ + + μ?, and (iii) photoproduction of charmed particles. It is shown that for thin sources with a flat spectrum (integral exponent γ = 1.1) a large (S = 0.1 km2) underground detector can detect both neutrinos and gamma-quanta generated by the source. Finally we compare the performances of underground detectors with S = 0.1 km2 for the search of gamma sources at E = 100 TeV with those of the previously proposed 1 km2 EAS array.  相似文献   

6.
《中国航空学报》2021,34(12):17-27
Ammonia (NH3) is considered as a potential alternative carbon free fuel to reduce greenhouse gas emission to meet the increasingly stringent emission requirements. Co-burning NH3 and H2 is an effective way to overcome ammonia’s relative low burning velocity. In this work, 3D Reynolds Averaged Navier-Stokes (RANS) numerical simulations are conducted on a premixed NH3/H2 swirling flame with reduced chemical kinetic mechanism. The effects of (A) overall equivalence ratio Φ and (B) hydrogen blended molar fraction XH2 on combustion and emission characteristics are examined. The present results show that when 100%NH3-0%H2-air are burnt, the NO emission and unburned NH3 of at the swirling combustor outlet has the opposite varying trends. With the increase of Φ, NO emission is found to be decreased, while the unburnt ammonia emission is increased. NH2 → HNO, NH → HNO and HNO → NO sub-paths are found to play a critical role in NO formation. Normalized reaction rate of all these three sub-paths is shown to be decreased with increased Φ. Hydrogen addition is shown to significantly increase the laminar burning velocity of the mixed fuel. However, adding H2 does not affect the critical equivalence ratio corresponding to the maximum burning velocity. The emission trend of NO and unburnt NH3 with increased Φ is unchanged by blending H2. NO emission with increased XH2 is increased slightly less at a larger Φ than that at a smaller Φ. In addition, reaction rates of NH2 → HNO and HNO → NO sub-paths are decreased with increased XH2, when Φ is larger. Under all tested cases, blending H2 with NH3 reduces the unburned NH3 emission, especially for rich combustion conditions. In summary, the present work provides research finding on supporting applying ammonia with hydrogen blended in low-emission gas turbine engines.  相似文献   

7.
Atmospheric charged clusters are formed in a series of rapid chemical reactions after ionisation, leaving a central ion X+ or X? clustered with n ligands (Y) n . In solar system tropospheres and stratospheres there are two distinct cluster regimes: the terrestrial planets contain largely hydrated clusters (i.e. Y=H2O), whereas the gas planets and their moons have organic or nitrogenated cluster species. These classifications are largely based on model predictions, since hardly any measurements are available. The few existing composition measurements are reviewed, including the recent detection of massive charged particles in Titan’s upper atmosphere. Technologies for both remote sensing and in situ measurements of atmospheric charged clusters are discussed. Preliminary measurements in the terrestrial atmosphere are presented indicating that ambient charged cluster species interact with downwelling infra-red radiation at 9.15 μm, even in the presence of cloud. This supports the possibility of future infrared detection of charged clusters.  相似文献   

8.
朱慧  张仁 《航空动力学报》1990,5(2):155-158,189
热分析实验是使用国产CDR-1型差动热分析仪。热分解活化能用Ozawa法和Kissinger法计算[1],其它动力学参数均用Kissinger法求得。全部热分析实验均在氮气气氛中进行。推进剂燃速用靶线法燃速仪测定。HMX和各种催化剂在使用前均经过烘干处理。催化剂过100目筛。   相似文献   

9.
We present observations of stratosphere NO y species from 2002 to 2010 taken by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and by the Global Ozone Monitoring by Occultation of Stars (GOMOS) instruments on board ENVISAT. We jointly used observations of MIPAS NO2, HNO3, N2O5, ClONO2 and N2O, and GOMOS NO2 and NO3. MIPAS results are part of the MIPAS2D database retrieved adopting a full 2D tomographic approach. We describe the mean distribution and variability of NO y species in the stratosphere, identifying changes induced by plasma processes. Beside enhancements due to sporadic solar proton events, we show that winter polar NO2 has an almost linear relationship with the geomagnetic activity index Ap down to about 10?hPa. This indicates a dominant role of energetic precipitating particles in the production of upper atmosphere NO y . The correlation has clear signatures extending to mid latitudes. Partitioning of the NO y reservoir species are also traced, with HNO3 and N2O5 showing a correlation with Ap extending to lower altitude within the polar regions. We found no large signatures of an impact of thunderstorm-induced plasma processes onto monthly means of NO y species in the stratosphere.  相似文献   

10.
Physical and chemical processes which affect the equilibrium distribution of ionization in the atmospheres of Jupiter, Saturn, Uranus and Neptune are reviewed. Current models imply readily detectable ionospheres for all four planets and suggest that protons should represent the dominant positive ion. Attention is directed to the probable importance of dissociative ionization of H2 as a source of H+. A number of potentially important loss mechanisms for H+ are discussed including a possible reaction of H+ with vibrationally excited H2. Protons may be removed efficiently at lower altitudes by reaction with CH4 and this process may offer a simple remote means for location of the turbopause.This is one of the publications by the Science Advisory Group.  相似文献   

11.
Klumpar  D.M.  Möbius  E.  Kistler  L.M.  Popecki  M.  Hertzberg  E.  Crocker  K.  Granoff  M.  Tang  Li  Carlson  C.W.  McFadden  J.  Klecker  B.  Eberl  F.  Künneth  E.  Kästle  H.  Ertl  M.  Peterson  W.K.  Shelly  E.G.  Hovestadt  D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2 + molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor.  相似文献   

12.
Sources of organic matter and inorganic tracers on Jupiter, including solar UV photolysis, lightning discharges, and convective quenching of hot gases from the lower atmosphere, are reviewed in light of Earth-based and Voyager data with the purpose of predicting the tropospheric steady-state abundances and vertical distributions of HCN, CH2O, and other species.It is concluded that a steady-state mole fraction of HCN in the Jovian troposphere of only 10-12 could be maintained by vertical transport of hot gases from the deep atmosphere. The observed HCN abundance (roughly XHCN = 10-9) appears to be due to photochemical reactions.After HCN, the most abundant organic disequilibrium species in the troposphere is probably C2H6, derived from direct photolysis of CH4 at high altitudes, with a mole fracton of 10-10 at the H2O cloud level. Inorganic tracers of disequilibrium processes are also briefly summarized.  相似文献   

13.
Our knowledge of Io’s atmosphere has improved dramatically in the last fifteen years, with a wealth of new observational data at millimeter, UV and IR wavelengths, and the development of numerous models describing its horizontal and vertical structure, composition, photochemistry and plasma interaction. Io’s atmosphere is dominantly composed of SO2, present mostly at low-tomid latitudes with column densities of a few 1016 cm−2 and important (factors of 5-10) longitudinal variations. Minor compounds include SO, S2, and NaCl. Sublimation equilibrium with SO2 frost and direct volcanic output coexist to maintain Io’s atmosphere against condensation, photolytic and escape losses.  相似文献   

14.
The plasma resonance phenomena observed at f pe, nf ce, and f qn by the GEOS-1 S-301 relaxation sounder are identified through a pattern recognition software process implemented in a mini-computer which receives on-line the compressed data. First, this processing system distributes in real time f pe and f ce measurements to the ground media. Second, it drives and controls automatically the S-301 on-board experiment by sending appropriate telecommands: the tracking of resonances is performed by shortening the frequency sweeps to a narrow range centered on the resonance location. Examples of such tracking sequences are presented, exhibiting sampling rates of the electron density measurements from once every 22 s (slowest rate) to once every 86 ms (highest rate available). The results give evidence of the existence of very small scale structures in the magnetospheric density, having characteristic sizes of the order of a few 102 m or/and a few 10-1 s. The relative amplitude of these density fluctuations is typically 1%. Because of satellite spinning, fixed frequency sounding sequences allow to measure in a few seconds the directivity features of the plasma resonance signals. Examples of directional patterns in the plane perpendicular to the geomagnetic field are presented: the electrostatic nature of the waves received at f pe, nf ce, and f qe being consistent with these patterns, the corresponding k vector orientations become available. The Bernstein modes properties are used to interpret the cf ce and f qe results.  相似文献   

15.
Climate is discussed as an integral part of System Earth, determined by a complex interplay of numerous geological, biological and solar processes. The historical and geological record of changing climate and atmospheric CO2 pressure does not support the current popular vision that this greenhouse gas is the dominant climate controlling agent. When empirically ante post tested against past global climate changes, the forecasts of the climate models mainly based on forcing by atmospheric CO2 are not borne out. On the other hand, recent studies show that solar variability rather than changing CO2 pressure is an important, probably the dominant climate forcing factor.  相似文献   

16.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   

17.
Emergence of a Habitable Planet   总被引:2,自引:0,他引:2  
We address the first several hundred million years of Earth’s history. The Moon-forming impact left Earth enveloped in a hot silicate atmosphere that cooled and condensed over ∼1,000 yrs. As it cooled the Earth degassed its volatiles into the atmosphere. It took another ∼2 Myrs for the magma ocean to freeze at the surface. The cooling rate was determined by atmospheric thermal blanketing. Tidal heating by the new Moon was a major energy source to the magma ocean. After the mantle solidified geothermal heat became climatologically insignificant, which allowed the steam atmosphere to condense, and left behind a ∼100 bar, ∼500 K CO2 atmosphere. Thereafter cooling was governed by how quickly CO2 was removed from the atmosphere. If subduction were efficient this could have taken as little as 10 million years. In this case the faint young Sun suggests that a lifeless Earth should have been cold and its oceans white with ice. But if carbonate subduction were inefficient the CO2 would have mostly stayed in the atmosphere, which would have kept the surface near ∼500 K for many tens of millions of years. Hydrous minerals are harder to subduct than carbonates and there is a good chance that the Hadean mantle was dry. Hadean heat flow was locally high enough to ensure that any ice cover would have been thin (<5 m) in places. Moreover hundreds or thousands of asteroid impacts would have been big enough to melt the ice triggering brief impact summers. We suggest that plate tectonics as it works now was inadequate to handle typical Hadean heat flows of 0.2–0.5 W/m2. In its place we hypothesize a convecting mantle capped by a ∼100 km deep basaltic mush that was relatively permeable to heat flow. Recycling and distillation of hydrous basalts produced granitic rocks very early, which is consistent with preserved >4 Ga detrital zircons. If carbonates in oceanic crust subducted as quickly as they formed, Earth could have been habitable as early as 10–20 Myrs after the Moon-forming impact.  相似文献   

18.
Ai   《中国航空学报》2008,21(6):559-564
Al2O3 particle-reinforced TiAl composites are successfully reaction-synthesized from the powder mixture of Ti, Al, TiO2, and Nb2O5, using the hot pressing reaction synthesis technique. The microstructure and mechanical properties of the as-sintered products are investigated. It is found that in the as-sintered products consisting of γ-TiAl, α2-Ti3Al, Al2O3, and NbAl3 phases, the fine Al2O3 particles tend to disperse on the grain boundaries. With the Nb2O5 content increasing, the grains are remarkably refined and the Al2O3 particles are dispersing more uniformly in the TiAl matrix, forming a partial lamellar structure containing α and lamellar phases. The hardness of the in-situ composites increases gradually, and the bending strength and the fracture toughness of the as-sintered products reach the maximum value of 398.5 MPa and 6.99 MPa·m^1/2, respectively, as the Nb2O5 content increases to 6 wt%.  相似文献   

19.
Interconnected Ni(OH)2 nanoflakes and polyether amine(PEA) were deposited on carbon fiber tows via a facial and effective process of chemical bath deposition and dip coating. Based on this, a win–win benefit of simultaneously improvements in interfacial shear strength(IFSS) of carbon fiber/epoxy composites and the electrochemical activity has been achieved. Compared with CF and CF-Ni(OH)2 composites, the IFSS of CF-Ni(OH)2-PEA/epoxy composite respectively increas...  相似文献   

20.
This article carries out synthetic measurements and analysis of the characteristics of the asymmetric surface dielectric barrier discharge plasma aerodynamic actuation.The rotational and vibrational temperatures of an N2 (C3Пu) molecule are measured in terms of the optical emission spectra from the N2 second positive system.A simplified collision-radiation model for N2(C) and N2+(B) is established on the basis of the ratio of emission intensity at 391.4 nm to that at 380.5 nm and the ratio of emission intensity at 371.1 nm to that at 380.5 nm for calculating temporal and spatial averaged electron temperatures and densities.Under one atmosphere pressure,the electron temperature and density are on the order of 1.6 eV and 1011cm-3 respectively.The body force induced by the plasma aerodynamic actuation is on the order of tens of mN while the induced flow velocity is around 1.3m/s.Starting vortex is firstly induced by the actuation;then it develops into a near-wall jet,about 70 mm downstream of the actuator.Unsteady plasma aerodynamic actuation might stimulate more vortexes in the flow field.The induced flow direction by nanosecond discharge plasma aerodynamic actuation is not parallel,but vertical to the dielectric layer surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号