首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
本试验研究中,应用相移-多普勒激光粒子分析仪考察了喷雾火焰中的油滴尺寸与速度分布、数密度和容积通量等沿火焰径向和轴向(火焰长度)分布和变化,估算了油滴蒸发(燃烧)常数和油雾燃烧完全度沿火焰长度分布等。  相似文献   

2.
利用高速显微摄像技术捕捉到航空煤油RP-3挂滴的燃烧现象——微气泡周期性暴涨/破碎现象。环境温度为973K时,在直径为1.25mm的燃烧油滴内,捕捉到了微气泡的急剧暴涨和瞬间碎裂现象。即:①在0.04s内,微气泡直径增长41.6%;②在0.01s内,暴涨的气泡在油滴内破碎,激发油滴急剧振荡;③油滴恢复相对稳定的蒸发燃烧,内部残留的微气泡,启动第2轮暴涨/破碎;④经过3轮暴涨/破碎,油滴燃烧殆尽。因而得出:被高温加热的石英丝挂钩在油滴内部诱发的快速蒸发效应,是微气泡周期性暴涨/碎裂的驱动力,而表面张力则是油滴恢复并保持稳定燃烧的约束机制。   相似文献   

3.
刘冉  刘玉英  高昭 《推进技术》2017,38(12):2753-2760
为了拓宽蒸发式火焰稳定器的贫油熄火边界,在0.14~0.3Ma及483K的来流条件下,试验研究了裙板长度及头部开孔率对贫油熄火性能的影响。采用冷态流场数值模拟结合蒸发式火焰稳定器燃烧负荷参数的方法分析与预测蒸发式稳定器贫油熄火性能。研究结果表明,裙板减小了稳定器头部进气量且增加了局部回流区的体积,减小了燃烧负荷参数,因此裙板长度为32.5mm的稳定器贫油熄火特性优于不带裙板的火焰稳定器。蒸发式火焰稳定器随着头部开孔率增大,头部进气量增加,因此燃烧负荷参数增大,头部开孔率6.4%的稳定器贫油熄火特性优于头部开孔率9%的火焰稳定器。不同结构参数的蒸发式火焰稳定器的无量纲燃烧负荷参数与贫油熄火局部油气比成线性关系,可以用于预测不同结构参数的蒸发式火焰稳定器贫油熄火性能。  相似文献   

4.
在航空发动机燃烧室中的航空煤油雾化成液滴后蒸发燃烧,单液滴蒸发特性不但是燃烧室设计参数之一也是两相湍流 燃烧模型组的重要组成部分,对液体燃料液滴蒸发特性研究具有重要意义。对单液滴蒸发测试及数据处理方法进行总结,综述了国 内外不同测试条件下的液滴蒸发试验装置设计、基本原理与操作步骤;对比了传统与新型液滴温度测量方法及液滴成像方法;分析 了不同液滴图像处理方法的优缺点,最后总结了造成液滴蒸发试验误差的主要因素为仪器误差、液滴尺寸换算误差、挂丝方式生成 的误差、挂丝带来的误差、图像测量误差。重力场、环境温度、环境压力及来流速度对液滴直径和液滴温度变化的影响分析,以及随 着测试技术的发展所应用的多种先进测试方法和技术,为单液滴蒸发试验装置的设计、测试技术的研究提供参考,为液滴蒸发试验 开辟了新的研究思路。  相似文献   

5.
二次气射流角对涡轮叶问燃烧室的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究二次气射流角对涡轮叶间燃烧室的影响,设计了3种带有不同二次气射流角的涡轮叶间燃烧室模型,利用FLUENT软件的Realizablek-8湍流模型、PDF燃烧模型、D0辐射模型和离散相模型对燃烧室的流动和燃烧进行数值模拟。结果表明:涡轮叶间燃烧室具有高效率(99.2%)的特点,增大二次气射流角可使切向动量分量增加、油滴蒸发变慢、出口温度场分布不均匀、总压损失增加。  相似文献   

6.
单扇区、扇形、全环燃烧室热声不稳定性试验和模拟研究   总被引:1,自引:1,他引:0  
贫油分级燃烧室在单扇区、扇形、全环燃烧室试验台上均会发生自激周期性燃烧不稳定现象,但振荡模态和频率存在差异。为研究这一差异并建立三者之间的联系,同时验证热声不稳定性模拟方法,对三种试验台的燃烧不稳定性进行了试验和数值模拟研究,获得了不同试验台的振荡特性,并对数值模拟和试验结果进行了对比。结果表明:全环燃烧室存在两个失稳模态,扇形燃烧室只存在一个失稳模态,单扇区燃烧室也只存在一个失稳模态;单扇区、扇形燃烧室可以反映全环燃烧室中其中一个失稳模态,而无法反映全环燃烧室的另外一个失稳模态;三维有限元热声模拟方法准确预测了三种不同试验台的燃烧稳定性,预测的无量纲失稳频率与试验结果一致,误差在2%以内。   相似文献   

7.
驻涡燃烧室蒸发管供油装置的雾化蒸发性能试验   总被引:3,自引:2,他引:1  
设计了两种适用于驻涡燃烧室的蒸发管供油装置,并通过试验研究了两种蒸发管在不同环境温度、气液比、蒸发管雾化用气温度、流速等条件下的雾化蒸发性能.试验结果表明,这些条件对蒸发管的雾化蒸发性能均有较大影响,而且不同蒸发管出口轴向位置处的雾化性能也有较大差别.比较两种蒸发管的雾化性能后,选择其中较好的一种蒸发管作为涡轮级间驻涡燃烧室的供油装置,燃烧性能试验的结果表明,采用此种蒸发管的驻涡燃烧室具有较高的燃烧效率、较宽的稳定燃烧范围和较低的壁面温度.   相似文献   

8.
为了研究燃油射流雾化过程中的破碎形态及发展轨迹,实现燃油雾化过程的精确数值仿真,本文对直射式喷嘴喷入横向气流中的雾化特性进行数值模拟。计算采用耦合的多相流模型VOF和离散相模型DPM,研究煤油的一次雾化中射流破碎形态及发展过程,二次雾化过程中油滴的索泰尔平均直径(SMD)空间分布特性。应用动态网格自适应技术,精确捕捉到液体结构和射流表面的波动。数值计算结果表明,射流破碎过程中主要发生的是液柱破碎和表面剪切破碎;韦伯数对破碎模态的影响较大,液-气动量比对射流轨迹影响较大;在不同气动进口条件下,燃油射流轨迹以及液滴空间分布特性与经典经验关系式以及试验数据具有较好的一致性。  相似文献   

9.
利用高速显微摄像技术观测了航空煤油RP-3的微尺度挂滴燃烧过程,分析了油滴内微气泡成核的基本机理和表现形式.在凸曲率诱发的低压成核机理下,确证了3种具体成核形式:①挂丝/油滴界面成核.挂丝温度高于油滴温度,在交界面上由于温差诱导了蒸发效应形成微气泡成核.②颗粒/油滴界面成核.微油滴内的微米量级的丝状或球状杂质颗粒及胶质颗粒形成的凸曲率侧诱导低压,成为气泡的萌生的成核点.③油滴表面凹坑成核.重组分形成筏结构与油滴表面侧的线张力和表面张力同时作用,引起油滴表面内凹,凹坑的凸曲率侧气泡成核点.这些进展为深入研究微尺度燃烧奠定了基础.   相似文献   

10.
为了解弱旋流燃烧下游的流场特性及其对贫油预混预蒸发(LPP)燃烧室的影响,采用数值模拟方法,对6种不同旋流器流道特征的弱旋流燃烧室三维冷态流场进行数值模拟。结果表明,旋流器流道特征对下游流场特性产生较大影响,不同叶片通道的旋流器下游中心回流区的形状、尺度、速度梯度和全流场速度分布均呈现出不同特征。主模旋流器旋流数低于0.51时,中心回流区基本相同且尺度较小,主要由副模旋流控制;主模旋流器旋流数增至0.59时,旋流器下游形成了由主模旋流控制的更大的中心回流区。  相似文献   

11.
为了解微细直管对液滴形成和燃烧稳定性的影响,采用正庚烷作为燃料在内径为4mm的石英直管中的进行了实验研究.其结果显示:首先在不加热时,容易形成液滴,正庚烷体积流量小于40μL/min 时,火焰稳定性受液滴滴落的影响较大,液滴的蒸发主要受到空气体积流量影响下的火焰位置的影响;大于40μL/min时,液膜形成,火焰受液滴滴落影响不大.其次,管壁加热温度为180℃时,正庚烷体积流量低于60μL/min时难以形成液滴,大于60μL/min时液滴滴落后不形成液膜,液滴的蒸发受空气流速的影响较大,在液滴滴落以及空气流速的影响下,微燃烧器温度的变化对燃料的蒸发产生更大的影响,富燃较贫燃更易形成连续的火焰.空气流速大小对管壁温度影响明显,空气流速越小,管壁温度越高,液滴蒸发速率越大.   相似文献   

12.
针对自燃推进剂接触就能着火燃烧的特点,设计实现了高压飞滴及常压挂滴两套单液滴燃烧实验系统,并开展了有机凝胶偏二甲肼(UDMH)液滴在四氧化二氮(NTO)氧化剂环境中着火燃烧的实验研究,深入分析了其着火燃烧特性及NTO氧化剂浓度、温度、压力、对流速度、液滴初始尺寸的影响。结果表明:有机凝胶UDMH液滴表面液体燃料耗尽后会形成弹性胶凝剂膜,促使液滴内部出现沸腾蒸发及非稳态蒸汽喷射,导致燃烧火焰出现剧烈扰动。NTO浓度升高,增大了扩散燃烧火焰范围,加速液滴表面燃料蒸汽分解燃烧,有利于提高燃烧速率。NTO温度越低,着火延迟时间越长,并容易导致熄火。NTO对流速度越大,也会增加着火延迟时间,且更容易形成脱体火焰,使其燃烧速率降低。凝胶液滴尺寸越大,其着火延迟时间受对流速度的影响明显减小。NTO压力升高会抑制燃料蒸汽喷射强度,形成更稳定且更靠近液滴表面的双火焰结构。  相似文献   

13.
利用高速显微摄像技术,观察研究了RP-3微尺度挂滴燃烧过程中,微汽泡的核化、生长、聚并和溢出的行为过程及液滴跳动现象.结果得出:①液滴中微汽泡产生的位置;②在蒸发初期时由微汽泡引起液滴体积的膨胀;③在燃烧中由汽泡行为导致液滴的跳动;④液滴燃烧的稳定(不爆裂)现象.分析了表面张力在挂滴燃烧过程中的作用,确定了挂滴稳定燃烧的临界条件下的临界特征体积在2.5~5.0μL.   相似文献   

14.
用不同化学反应模型对煤油超声速燃烧的数值分析   总被引:1,自引:0,他引:1  
采用单步不可逆有限速率化学反应模型,同时结合离散液滴模型、概率密度函数紊流燃烧模型的混合分数平衡化学反应模型,对煤油在双模态燃烧室内的燃烧进行了数值分析。通过比较数值计算结果与实验结果,说明计算所采用的模型是有效的。在给定的计算条件下,与单步不可逆有限速率化学反应模型相比,结合了离散液滴模型的混合分数化学反应模型更能准确地预测煤油在双模态燃烧室内的喷雾燃烧,并且集燃料喷射、混合及火焰稳定为一体的凹槽火焰稳定器增强了燃料的混合和燃烧,使燃烧效率在燃烧室出口达0.880 6。   相似文献   

15.
基于光滑粒子流体动力学方法(Smoothed Particle Hydrodynamics,SPH),开展了SPH新算法在蒸发燃烧领域的研究。建立了适用于SPH方法的蒸发数值模型,推导了基于傅立叶热传导公式和菲克扩散定律的SPH离散方程;借鉴VOF方法(Volume of Fluid)的思想,提出了SPH粒子的液相质量分数的概念,以有效表征蒸发过程中的相变问题。采用SPH方法对高温环境中单个液滴的蒸发过程进行数值模拟,结果符合D2定律,与理论模型相一致;在强迫对流环境中,液滴的蒸发过程受到对流作用及表面张力的影响,蒸发速率加快;进一步对双液滴在静止、对流环境中的蒸发过程进行数值模拟研究。结果表明,液滴的间距、滴径对多个液滴的蒸发过程影响至关重要,液滴间距至少在两倍的液滴直径以上,相互之间的影响才可以近似忽略。通过本文研究,拓宽了SPH方法在蒸发相变领域的应用范围,研究结果也能够为进一步的燃烧问题研究奠定基础。  相似文献   

16.
吴海龙  聂万胜  郑直  何博 《推进技术》2019,40(11):2537-2545
为研究液氧/煤油火箭发动机燃烧室内经喷注形成的煤油液滴的燃烧过程,基于实际气体状态方程、高压热物性修正、高压气液平衡和详细化学反应动力学,建立一维的全瞬态液滴燃烧模型,对超临界环境下两组分煤油替代物液滴的燃烧特性及液滴初始直径的影响进行仿真研究。结果表明,在超临界环境下,相比于煤油液滴纯蒸发过程,煤油液滴燃烧过程的迁移时刻大大提前;煤油液滴着火之后很快进入超临界燃烧阶段,此时液滴燃烧过程可以看成中心附近的燃料高浓度区与外侧氧气高浓度区之间的扩散燃烧过程;煤油液滴的火焰半径先增大,达到最大值之后开始减小,并减小为零,火焰温度在着火之后快速上升至最大值,并基本保持不变,在火焰半径减小为零之后开始降低;随着液滴初始直径的增大,火焰特性以及液滴中心参数变化曲线趋势不变、整体延迟,着火时间、迁移时间和液滴寿命增大。  相似文献   

17.
为考虑喷嘴内部湍流运动对燃油雾化和火焰浮起长度的影响,将喷嘴内部的湍流流动以权重的形式加入初次破碎模型中,并对二次破碎模型进行了修正。建立了完整的燃油雾化和燃烧的数学模型。通过与实验数据对比来验证燃油雾化模型的准确性,并讨论了喷嘴内湍流运动对燃油雾化过程的影响。结果表明,湍流运动会加快液滴破碎和蒸发的速率,从而减小燃油蒸气贯穿距。火焰浮起长度的计算采用本文建立的燃油雾化模型,成功计算了火焰浮起长度随氧气体积分数、气体密度、气体温度和入射压力变化的规律。同时发现在不同气体密度和氧气体积分数的工况下,喷嘴内部湍流运动对火焰浮起长度的影响基本保持不变,分别为9%和13%;入射压力和气体温度的升高会导致喷嘴内部湍流对火焰浮起长度的影响逐渐变大。   相似文献   

18.
施红辉  师顺  刘晨 《航空动力学报》2020,35(10):2017-2027
以超声速气流中液滴变形破碎行为为研究内容,对水平激波管中承受激波冲击的亚毫米水液滴(0.44~1.09 mm)变形破碎过程进行了观测,实验激波马赫数范围为1.07~2.11。利用纹影法,结合高分辨率高速相机对不同破碎模态下液滴的变形破碎特征进行了记录,得到了袋状、多模态、剪切和爆炸式等破碎模式下的液滴纹影图像,分析了液滴运动参数的时空关系。得出了液滴变形阶段,液滴无量纲横向变形宽度以及液滴无量纲迎风面位移随无量纲时间的变化发展规律,并且得出在液滴初始直径相同时,不同液滴破碎模式的无量纲最大横向变形宽度的变化,其中袋状、多模态、剪切破碎模式的无量纲横向最大变形宽度均在1.15~1.61范围内变化,爆炸式破碎模式的无量纲横向最大变形宽度均在0.21~0.68范围内变化。  相似文献   

19.
《中国航空学报》2023,36(8):1-23
The injection and atomization process of a liquid fuel jet is critical for an ignition start of a scramjet engine. Airwall-mounted crossflow injection strategy is widely used in scramjet combustors, avoiding high total pressure loss and allowing the liquid fuel to rapidly undergo atomization, mixing, and evaporation. In this review, research progress on a liquid jet in supersonic crossflow was evaluated from aspects of atomization mechanism and spray characteristics. When a liquid jet is injected into a supersonic crossflow, primary and secondary breakups occur successively. The surface instability of liquid can significantly affect the breakup process. This review discusses the current understanding of the breakup process and spray characteristics of a liquid jet in supersonic crossflow including the mechanism of atomization and the characteristics of distribution and atomization. The development of windward Rayleigh-Taylor (R-T) unstable waves is the main factor in column breakup. The development of Kelvin-Helmholtz (K-H) unstable waves along the circumferential direction of the jet or droplets is the main factor of surface and droplet breakups. The liquid–gas momentum ratio is the most important factor affecting the penetration depth. The span width of the liquid jet is affected by the windward area. Breakup and coalescence lead to a transformation of the size distribution of droplets from S- or C-shaped to I-shaped, and the velocity distribution of the droplets on the central symmetry plane has a mirrored S-shape. The droplet distribution on the spanwise cross-section retains a structure similar to an “Ω” shape. At last, some promising recommendations have been proposed, namely a theoretical predictive model which can describe the breakup mechanism of a liquid jet, the distribution characteristics and droplets size distribution of a liquid jet under a cavity combustion chamber, especially for enthalpy flows with complex wave structures.  相似文献   

20.
液体燃料在毛细管出口扩散火焰燃烧特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解微尺度扩散火焰燃烧特性,选用液体燃料,进行燃烧实验,并利用理论模型对层流火焰高度进行了预估。结果表明:毛细管层流扩散火焰尺寸随燃料流量的增加而增大,水平方向当流量大于50μL/min时,由于燃料蒸发不完全,会有液滴喷出,火焰尺寸增长速度变小;竖直方向受浮力影响,火焰高度被拉长,远大于水平方向。火焰尺寸越大,振荡越剧烈,表现为振荡周期随流量的增加而减小,且竖直方向小于水平方向。燃料含碳量影响火焰特性,含碳量越多,火焰尺寸越大,火焰越明亮,振荡越剧烈。流量较大时,含碳量较多的煤油会向管口周围喷射燃料,形成剧烈振荡的不稳定火焰。竖直方向火焰高度与管口处燃料蒸汽雷诺数成正比,Roper模型预估结果与实验结果相近,可用于计算液体烃类燃料在竖直方向的层流扩散火焰高度。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号