首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
基于两相流理论滑动轴承动力特性求解   总被引:6,自引:4,他引:2  
孙丹  张楚  郭瑞  杨建刚 《航空动力学报》2012,27(12):2821-2827
将计算流体动力学(CFD)两相流与动网格技术应用于滑动轴承动力特性数值求解,建立了基于CFD两相流滑动轴承动力特性求解模型,该模型无需设定油膜破裂边界条件且更能准确模拟滑动轴承流场特性.比较了单相流与两相流滑动轴承压力分布特性,计算分析了滑动轴承气穴分布特征及其影响因素,研究了两相流模型对滑动轴承动力特性的影响.计算结果表明:气化比例随着转速、偏心率和气化压力的增加而迅速增大,随进口压力的增加而缓慢减小.考虑两相流后,直接刚度系数增加,交叉刚度系数减小,直接与交叉阻尼系数均减小.随着偏心率的增加,单相流与两相流动力特性系数求解结果偏差增大.   相似文献   

2.
基于两相流的涡轮增压器轴承油膜特性分析   总被引:3,自引:3,他引:0  
利用计算流体动力学方法,分析了涡轮增压器半浮动轴承内油膜静力特性,考虑两相流油膜破裂和非牛顿流体润滑油模型,计算分析带轴向贯通油槽的油膜压力和汽化比率分布情况,以及转速、偏心率、润滑油温度和润滑油压力等因素对油膜承载力和摩擦功耗的影响规律。结果表明: 温度和转速是影响两相流油膜摩擦功耗的主要因素,分段楔形油膜的摩擦功耗与贯通轴向油槽的位置变化无关,油膜的气穴空化也不会引起摩擦功耗的明显变化;两相流油膜承载力随着偏心率的增加、油温的降低和油压增大而有不同程度的增大,但随转速的变化规律不一致;与此同时,小偏心率、高油压、低油温有利于减轻两相流油膜发生气穴空化的比率。   相似文献   

3.
张国渊  党佳琦  赵伟刚  赵洋洋 《航空学报》2019,40(3):422532-422532
处在高速、快速启动、低黏度介质润滑下的低温高速涡轮泵轴端机械密封性能与常规密封的性能发生了显著的变化,主要因素在于高速的振动影响、低黏度介质下的较差润滑性。以水为模拟介质,研究了低黏度介质下高速机械密封的运转性能,特别是气液两相流问题,实验过程中发现了两相流介质诱发的热振动问题,其机理可能在于受压缩有限空间内的流体可压缩性的变化导致。测试结果表明,在水润滑升速工况下,机械密封虽能够保持好的密封性能,但其性能变化规律较为复杂;在接触端面从接触到非接触状态的转变过程以及稳定运转过程中均存在两相流状态,密封端面温升和摩擦力存在明显的低频振荡,温度振荡可达30℃;出现汽化两相流的情况下,理论计算的结果与试验结果在升速时误差可达到50%以上。随着密封闭合力的增加,密封会出现明显的两相流现象,相变引起的温度和摩擦力的振荡可归结为一类流体密封的自激振动现象。  相似文献   

4.
箔片结构库伦摩擦效应对径向箔片轴承特性的影响   总被引:1,自引:1,他引:0  
基于有限元法建立波箔型气体径向轴承箔片结构的库伦摩擦模型,通过改变平箔片与波纹箔片之间以及波纹箔片与轴承座之间的摩擦因数,对比分析了在各种载荷分布条件下波纹箔片库伦摩擦模型与文献中线性弹簧模型的刚度特性,研究了库伦摩擦效应对波纹箔片刚度特性的影响规律.在此基础上,运用有限单元法和有限差分法求解雷诺方程和气膜厚度方程,研究了在两个工作转速下气体波箔片轴承中截面处最小气膜厚度随轴承承载力的变化规律以及承载力随偏心率的变化规律.通过数值仿真对该模型、文献中线性弹簧模型和刚性表面气体轴承进行对比分析,并把气膜厚度分布与文献结果进行了对比.结果表明:箔片的库伦摩擦力在一定程度上增大了波纹箔片的刚度,并且随着摩擦因数的增大其刚度以及两端固定的波纹箔片个数也增加,使得箔片轴承表面变“刚”,因此轴承静特性更趋于刚性表面轴承,此外当轴承承载力一定时,箔片摩擦因数越大轴承的最小气膜厚度越小.   相似文献   

5.
基于EEMD气液两相流差压信号时频分析   总被引:1,自引:0,他引:1  
为研究气液两相流流动过程的动态特性,采用V形内锥作为测量装置,通过高频差压变送器获得不同流型下的动态信号,提出了一种基于总体平均经验模式分解(EEMD)的气液两相流时频分析方法。通过对不同流型下的气液两相流的差压信号进行分析,研究了气液两相流的流动机理,为气液两相流流型及流量的准确测量奠定理论基础。分析发现EEMD的抗混分解能力很好,可以准确地提取两相流差压信号的频率成分及其时变情况,为今后两相流的识别提供理论基础,具有较高的工程应用价值。  相似文献   

6.
固体火箭发动机零维两相燃烧室压强计算方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
刘平安  王良  王璐 《推进技术》2018,39(2):317-325
为了更准确地预估含金属燃料固体火箭发动机的燃烧室压强,在压强计算中考虑两相流的影响,从一维两相喷管流动的求解出发,通过两相平衡流模型、两相常滞后模型、两相等温流模型、颗粒定温模型等模型的简化,分别推导不同模型下喷管中两相混合物的流量计算公式,再把流量公式应用到发动机零维内弹道理论中,推导并简化得到零维燃烧室平衡压强的计算公式。把压强公式用于HTPB推进剂固体火箭发动机和铝冰固体火箭发动机的燃烧室压强计算,结果表明,当固体推进剂中金属含量较高时(如铝含量为21%的HTPB推进剂发动机),用传统零维燃烧室压强公式预估的压强与实验误差较大,而使用合适的两相流模型和对应的零维燃烧室压强计算方法,在HTPB发动机中,能把压强预估结果与实验的误差降低到6%以内。如果使用多维内流场计算的方法,燃烧室压强预测结果的误差将下降到2.5%以内。结论发现在含金属固体火箭发动机的燃烧室压强计算中,考虑两相流的影响是必要的,而使用两相流修正后的零维燃烧室压强计算公式能够快速、较准确地预估这些发动机的燃烧室压强。  相似文献   

7.
为研究防冰支板气膜缝出流对其表面水滴撞击特性的影响,利用Fluent软件的离散相模型,在不同气膜缝出流位置、出流角度、宽度及出流流量条件下对防冰支板表面水滴撞击特性进行了计算。结果表明:水滴撞击极限随气膜缝出流流量的增大而减小;水滴局部撞击效率受气膜缝出流位置的影响,并随出流角度、出流流量的增大而减小;水滴总撞击效率随气膜缝出流位置的前移、出流角度的增大和出流流量的增加而减小;气膜覆盖效果随气膜缝出流角度的减小、宽度的增大和出流流量的增加而更好。  相似文献   

8.
中心进气转静盘腔的流量分配特性试验   总被引:1,自引:0,他引:1  
采用实验方法, 对具有中心进气、两个出口的盘腔系统的流动特性进行了研究.获得了静盘与转盘间隙以及转盘外缘小孔的冷气流量.结果表明:盘面出流孔的流量随总流量或转速的增加而增加, 该流量与总流量的流量比随总流量的增加而降低, 随着转速增加而增加.盘面出流孔数量为原出流孔数量的一半时, 流出流量也近似是原流出流量的一半.   相似文献   

9.
利用实验方法对一类带多孔板的辅助动力装置(APU)进气系统气动性能进行了研究.实验结果表明:两出口的总压恢复系数和总压畸变指数均随流量的增加不断降低.总压恢复系数在定总流量时略微下降,在定配比时几乎线性下降.总压畸变在周向上主要受多孔板无孔区影响,径向上主要受流道曲率影响.随开孔率增加,总压恢复系数不断增加.动力端不同开孔率下,总压畸变以径向畸变为主,负载端在小开孔率时以周向畸变为主,大开孔率时径向畸变成为主要因素.   相似文献   

10.
作为航空发动机润滑系统油气二相流的重要区域,主轴承腔的工作参数对内部二相流动的影响对于发动机润滑系统设计具有重要意义。利用DPM壁面液膜模型,采用CFD方法对某型发动机轴承腔简化模型内油气二相流进行了数值计算,计算结果与现有试验数据符合良好;给出了轴承腔在不同主轴转速及不同滑油流量下油膜厚度、空气和油膜速度的分布以及出口速度变化规律。  相似文献   

11.
基于能量守恒原理推导计入气体稀薄效应的修正能量方程及其有限差分表达式,并通过偏导数法和有限差分法联立求解修正Reynolds方程、修正能量方程、气体黏温关系和气膜厚度方程,详细研究了微型气体轴承静动态性能随结构参数、轴颈倾斜方位角和黏温热效应的变化规律。结果表明:气膜热效应提高了微型气体轴承的承载能力、摩擦因数和动态刚度系数,而降低了直接阻尼系数,轴颈倾斜误差对微型气体轴承的静、动态性能均产生不利影响,计算结果可为提高微型气体动压轴承?转子系统的稳定性提供重要理论依据。   相似文献   

12.
基于有限单元法建立了考虑库伦摩擦的波箔型径向气体箔片轴承的箔片结构模型,采用有限差分法和有限单元法耦合求解Reynolds方程和气膜厚度方程,通过求解轴颈达到极限偏心率时的轴承极限承载力,研究了箔片结构库伦摩擦效应对轴承极限承载力的影响规律,并搭建了轴承极限承载力测试试验台,利用温度法测量了两个具有不同轴承壳内表面粗糙度的波箔型径向气体箔片轴承的轴承极限承载力.通过对比分析仿真结果与试验结果表明:轴承壳圆柱孔内表面粗糙度为0.4μm的轴承在10000r/min和20000r/min下,轴承极限承载力分别为15.5N和42.3N;而表面粗糙度为1.6μm的轴承极限承载力为10.9N和29.6N,这是由于波纹箔片和轴承壳体之间的库伦摩擦力增大了波纹箔片的刚度,因此增大箔片结构摩擦因数使得轴承极限承载力降低,并且仿真结果变化趋势和试验结果变化趋势吻合.   相似文献   

13.
通过将径向、止推螺旋槽动压气体轴承相结合,建立了混合式动压气体轴承的润滑分析模型。阐述了其结构特点与润滑机理,建立轴承无量纲稳态Reynolds控制方程。提出混合式动压气膜压力耦合计算方法,推导气膜压力差分表达式,定义边界条件,构建气膜压力分布的数值计算方法。以最大径向承载力为目标优化结构参数。基于最优结构参数建立轴承气膜有限元模型,运用CFD分析轴承转子系统受不同冲击载荷时径向稳定性变化规律,研究混合式动压气体轴承动态特性与可靠性。搭建混合式动压气体轴承试验台,验证数值计算方法和有限元仿真分析的正确性。结果表明:提出的压力耦合计算方法可以准确地计算分析稳态气膜压力分布、承载力和承载性能,有限元仿真能更好地模拟动态流场变化,计算分析动态承载力、动态特性系数和稳定性。高转速下混合式气体轴承承载力、稳定性较好,对单向阶跃力、单向矩形力的抗冲击能力强,可靠性强。混合式动压气体轴承在优化承载性能与刚度的同时,应考虑抗冲击特性和稳定性以提高轴承的综合性能。   相似文献   

14.
高速角接触球轴承腔内气液两相流模拟分析   总被引:1,自引:1,他引:0  
基于轴承腔内气液两相流流动模型,采用VOF方法和MRF模型对高速角接触球轴承简化模型内润滑油的流动特性进行数值计算,获得腔内速度、压力以及润滑油分布情况。分析轴承转速和润滑油进口流量等参数对油液体积分数的影响,以及轴承腔内润滑油的流动轨迹和润滑油进入腔内的影响机理。结果表明:轴承高速转动阶段,润滑油在滚动体和保持架的搅动作用,在腔内局部形成漩涡不利于润滑油的流动;轴承腔内两相流场的环间压力具有周期性特点,喷射润滑油很难穿过环间压力进入腔内;腔内油液体积分数随轴承转速的升高而降低,随供油量的增加而增加,呈非线性关系;喷射角度对环间油液体积分数和滚道油液体积数的影响很大,选择合适的喷射角度能够得到更好的润滑效果。该研究结果对高速轴承润滑设计提供了一定的参考依据。   相似文献   

15.
高速滚动轴承喷油润滑油液穿透机理分析   总被引:3,自引:1,他引:2  
基于空气动力学研究高速滚动轴承环间气流特性,通过建立气相流数学模型和气液两相流数学模型研究润滑油在轴承环间的穿透过程,探究高DN值时润滑油的穿透机理.利用流体体积(VOF)模型对此状态下的空气和润滑油界面进行动态捕捉,以研究润滑油的运动过程、分布特点以及不同参数对环间油液体积分数的影响,得到了高速滚动轴承环间气相流的特性;润滑油在不同转速下进入轴承环间的运动过程;轴承环间气液两相流场的压力、速度特性;轴承环间初始气流场对润滑油进入的影响.结果表明:在轴承小端面靠近内圈附近喷油可以避免湍流对润滑油的影响和干扰,有利于润滑油进入环间;轴承环间存在有利于润滑油贴滚道运动的气流径向作用力,随着转速的增加,该力呈近似线性增加;气流的初始状态影响着轴承环间润滑油的运动状态,润滑油对气流的运动影响较小;较低转速时,轴承环间周向压力变化很小可忽略,较高转速时,其呈现周期性波动,对润滑油进入的影响不可忽视;在较低转速时通过提高喷油体积流量可以有效提高轴承环间油液体积分数,但是高转速时,通过提高喷油体积流量来提高轴承环间的油液体积分数的效果并不明显.   相似文献   

16.
高速球轴承正常工作时,处于高速旋转状态,此时油相和气相因重力和离心力的作用在轴承环间剧烈运动。为了更准确地分析轴承环间的两相流动,采取VOF模型进行内部流场的模拟,采用多重旋转坐标系描述部件运动。建立球轴承环下润滑计算模型,分析了考虑滚珠自转因素下轴承内部的流动,并在此基础上探究了转速及供油量对轴承工作状态的影响。结果表明,对比整体模型与滚珠自转模型,发现滚珠自转使得轴承内部油体积分数增大,同时也使得滑油穿透间隙达到外环的能力增加;在考虑滚珠自转情况下,转速的不断增大,使得轴承内部的油相体积分数不断减小,在低转速情况下滚珠自转对流体运动影响较为明显,在高转速情况下公转速度对流体运动起到主导作用,滚珠自转对流体运动影响减弱;供油量不断的增大,使得滚珠自转模型内部的油相体积分数也在不断增大,而且滚珠自转运动会加强滑油在轴承内部的分布。  相似文献   

17.
利用一种新的迭代算法 ,分析了高速发动机油膜惯性对活塞裙润滑特性的影响 .该迭代方法是利用有限元法和差分法交替求解Navier Stocks方程和雷诺方程 ,据此导出了适用于高速发动机活塞裙的润滑计算的混和润滑雷诺模型 .新的模型借助惯性系数 ,引入了油膜惯性项 ;同时给出求解含有油膜惯性项的迭代步骤和有限元表达式。计算结果表明 :随着惯性系数和活塞裙的长径比的不同 ,油膜惯性会对油膜的摩擦力、压力和承载力产生不同的影响 ,这种影响对承载力尤为明显 .该润滑模型也可用于中、低速发动机的活塞裙润滑计算以及不计入惯性项 (惯性系数置为零 )的某些润滑问题求解 .  相似文献   

18.
针对极低供油压力工况开展实验研究,以考察气液两相流对挤压油膜阻尼器(SFD)油膜参数特性的影响。结果表明:当SFD入口气体体积分数小于0.9时,油膜阻尼随着入口气体体积分数的增加而减小,直至气体体积分数增大到0.9时,油膜阻尼是纯油状态时阻尼的60%;当气体体积分数大于0.9时,油膜阻尼大幅减小至几乎可以忽略不计。现有理论模型并不适用于极低供油压力工况。基于实验结果,找到了最符合SFD两相流动的等效黏度模型,其理论预测的油膜阻尼与不同供油压力下的实验数据吻合较好,为SFD两相流研究的模型选择提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号