首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本文首次将新型丝状暴露电极DBD等离子激励器应用于大迎角下细长体非对称涡控制。丝状暴露电极的材料的选择对DBD推力以及推力效率至关重要,通过地面精细推力测量对丝状暴露电极等离子体激励器进行了优化,结果表明,本文研究材料中采用钨丝作为暴露电极,其推力效率最优;且随着电极直径从d=0.3 mm减小到d=0.08 mm,DBD推力效率显著提升。基于优化后的DBD激励器,将其应用于前体非对称涡控制:未施加等离子体控制时,压力测量以及PIV结果均表明细长体背风区流场为明显的非对称涡结构;在等离子体激励下,该非对称涡结构可变为对称甚至反向非对称,且非稳态激励控制能力明显优于稳态激励。研究发现,大迎角下细长体非对称涡控制与背风区原始涡系结构有关,其中包含对称涡系和非对称涡系。本文研究为大迎角下细长体非对称涡控制提供了一种新思路,同时也为丝状暴露电极DBD等离子体激励器的应用提供参考。  相似文献   

2.
利用DES方法对处于非对称流态下的细长旋成体进行了俯仰和偏航振荡的数值模拟,观察细长体气动特性尤其是背风面非对称分离涡的变化。计算结果表明在大迎角非对称多涡系情况下,固定频率和振幅的非定常运动可以改变流场结构和气动力,对细长体背风面流态有巨大的影响。俯仰振荡对非对称分离涡有明显的控制作用,抑制流场的非对称性,使分离涡趋于对称;而固定频率的偏航振荡则破坏背风面分离涡的稳定性,激励非对称背涡产生随时间变化的周期性脱落。所进行的非定常运动与细长体流场耦合作用研究在国内外研究尚少。  相似文献   

3.
大迎角前体涡控制方法综述   总被引:1,自引:0,他引:1  
大迎角下飞行器的常规舵面处于机身/弹身的尾涡中,偏航控制能力严重下降。同时,背风侧的非对称涡系导致压力非对称分布,从而诱发出一个几乎与法向力同量级的侧向力,并伴随着很大的偏航力矩。前体涡控制方法可以为细长飞行器提供所需的偏航力矩,在大迎角机动飞行领域具有广阔的应用前景。本文总结了国内外近十年发展的大迎角前体涡控制方面的新方法。其中,被动控制方法包括边界层转捩带、微鼓包、微凹坑、边条、自激振荡旗帜和涡流发生器等;主动控制方法包括等离子体激励器、单孔位微吹气、轴向吹气、合成射流激励器、非定常小摆振片和充气边条等。着重介绍了各种方法的控制效果、机理和适用范围。在这些方法中,涡流发生器、合成射流激励器、非定常小扰动片、等离子体激励器、单孔位微吹气等线性控制方法均有可能提高细长体飞行器大攻角时的机动能力,具有一定的工程应用价值。最后,对大迎角前体涡控制方法的应用前景和未来新的发展方向进行了展望。  相似文献   

4.
细长体大迎角非对称流动的高速PIV风洞试验研究   总被引:1,自引:0,他引:1  
具有细长前体构型的飞行器在大迎角绕流中会出现明显的非对称涡系流动及其伴随而来的非对称力,该现象受多种因素影响,而其中对压缩性效应的研究相对较少。在0.6m亚跨超声速风洞中,采用PIV测量技术,对尖拱细长旋成体大迎角非对称流动开展了试验研究。试验M数范围为0.4~1.2,迎角为40°。试验结果表明:细长体模型在高速情况下仍然存在非对称多涡流动结构;Re数和压缩性均对非对称涡流动产生明显影响;模型头尖部人工微扰动与非对称涡之间存在确定的响应关系。  相似文献   

5.
大迎角分离流场在等离子体控制下的特性研究   总被引:2,自引:0,他引:2  
设计了一种新型的大迎角主动流动控制方法。采用圆锥-圆柱组合体模拟飞行器前体,在靠近圆锥尖端处镶嵌了一对马蹄形单电极介质阻挡放电(single_Dielectric Barrier Discharge SDBD)等离子体激励器,通过风洞实验研究了等离子体激励器在不同状态下对大迎角模型前体的非对称气动载荷的控制作用。实验结果表明,通过控制等离子体激励器的开闭可以使得圆锥-圆柱组合体在大迎角下出现的侧力改变方向。还对通过调节单侧等离子体激励器的激励电压实现圆锥前体侧力系数在正负极值间连续变化的可能性进行了初步的实验探索。  相似文献   

6.
为了在更高的风速下实现圆锥前体分离涡的控制,了解AC-DBD和NS-DBD激励器的激励特性,应用交流(AC)放电和纳秒脉冲(NS)放电等离子体激励对20°顶角的圆锥-圆柱组合体圆锥段前体非对称流场进行主动流动控制实验。实验在低速开口风洞中进行,迎角45°,风速5~22m/s,流动控制方式为等离子激励器关闭、左舷或右舷等离子体激励器开启三种模式。结果表明:风速5m/s时,通过AC-DBD的左、右舷激励可控制圆锥前体的非对称流场实现镜像对称,NS-DBD则无明显作用效果;随着风速的提高,AC-DBD对非对称载荷的控制作用逐渐减小,与此同时NS-DBD的控制作用逐渐增加;风速22m/s时,NS-DBD可实现圆锥前体非对称流场的镜像对称控制,而AC-DBD则无明显作用效果;相对于AC-DBD等离子体激励,NS-DBD对于更高速度下的分离涡流场控制是有效的。  相似文献   

7.
本文介绍了头部旋转对大迎角不对称涡系影响的观测结果,说明了由此而抑制大迎角不对称涡系的机理。 实验结果表明,头部旋转对细长体无侧滑大迎角不对称涡系涡迹的影响是:随头部的逐渐转动,涡系的不对称发生了周期性变化;此时,由于涡不可能迅速改变状态,从而抑制、甚至接近消除了大迎角时出现的涡系不对称现象。  相似文献   

8.
利用等离子体进行流动控制是当前的研究热点之一.本文研究通过数值方法模拟等离子体对流场作用的实现方法,及利用数值模拟方法研究翼型大迎角分离流动的等离子体控制.利用CFD软件Fluent中的自定义函数接口,通过C语言编程在软件中引入DBD等离子体激励模型外加体积力源项,对NACA0015翼型大迎角下的等离子体控制进行数值模拟.验证DBD等离子体激励在抑制流动分离与增升减阻方面的作用.结果表明:流动控制效果与DBD激励器布置位置有直接关系;激励器的数量与激励强度均会影响流动控制作用.  相似文献   

9.
李国占  俞建阳  刘华坪  陈浮  李林熹 《推进技术》2017,38(11):2548-2554
为获得锯齿电极等离子体激励器提高气膜冷却效率的机理,对有/无锯齿电极等离子体激励器作用下的平板气膜冷却流场进行了数值研究,并采用唯象模型模拟锯齿电极等离子体激励器对流场所施加的电场力。结果表明,冷却射流在锯齿电极等离子体激励器的下拉诱导作用下对主流的穿透率降低,射流中心轨迹高度的下降幅度沿流向发展逐渐增大;锯齿电极等离子体激励器气动激励作用下气膜孔下游的肾形涡的强度与尺度均减小,同时肾形涡的两侧产生与其旋转方向相反的小尺度的反肾形涡,进一步抑制了肾形涡的发展;锯齿电极等离子体激励器产生的展向扩散效应提高了冷却射流的展向扩张能力,从而提高了气膜冷却效率,与无等离子体气动激励相比,锯齿电极等离子体激励器作用下平板中心线与展向平均气膜冷却效率分别提高了50%与200%。  相似文献   

10.
压缩性对细长体涡流非对称发展的影响   总被引:4,自引:1,他引:4  
通过数值方法对大迎角细长体湍流流场的模拟,探讨压缩性对细长体非对称绕流发展的影响。结果表明细长体顶端的极小扰动诱发显著的非对称绕流,非对称的涡系结构沿轴向是逐步演化的;在亚临界横流马赫数区间,马赫数越高非对称越显著;在超临界横流马赫数区间,细长体两侧出现横流激波,非对称的发展被抑制,马赫数越高非对称越弱。  相似文献   

11.
等离子体激励器通过产生的等离子加速气流,可以实现对流动的控制。单级等离子体激励器由于受到等离子体放电的物理限制,其控制作用较小;为了提高等离子体流动控制的效果,关于多级等离子体激励器的研究得到发展。采用图像采集和粒子示踪测速系统(PIV),对传统多级等离子体激励器和多级双极性等离子体激励器的放电现象以及气流加速进行研究,并通过流场速度分布计算等离子体激励器对空气产生的推力和吸力。结果表明:随着电压的升高,传统多级等离子体激励器产生的推力和吸力会逐渐减弱;而多级双极性等离子体激励器产生的推力和吸力均呈逐渐增强的趋势。  相似文献   

12.
双极性等离子体激励器圆柱绕流控制实验研究   总被引:5,自引:0,他引:5  
在低速风洞中利用多级双极性等离子体激励器控制圆柱绕流的流动分离。实验风速U∞=10m/s,基于圆柱直径的雷诺数Re=2.8×10^4,在实验中将两组三级双极性等离子体激励器布置在圆柱模型肩部,利用粒子图像测速技术测量圆柱的尾流场。实验结果表明,采用定常和非定常激励均能抑制圆柱尾迹区,等离子体激励强度是影响激励器对圆柱绕流控制能力的重要因素;非定常脉冲激励耗电少,对流动控制能力强,效率明显高于定常激励,脉冲激励频率影响等离子体激励器对流动的控制能力。在实验风速为10m/s时,脉冲激励频率与圆柱涡脱落频率一致,流动控制效果较好。  相似文献   

13.
A 15° swept wing with dielectric barrier discharge plasma actuator is designed.Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.  相似文献   

14.
Aircraft icing has long been a plague to aviation for its serious threat to flight safety. Even though lots of methods for anti-icing have been in use or studied for quite a long time, new methods are still in great demand for both civil and military aircraft. The current study in this paper uses widely used Dielectric Barrier Discharge(DBD) plasma actuation to anti-ice on a NACA0012 airfoil model with a chord length of 53.5 cm in a closed-circuit icing wind tunnel. An actuator was installed at the leading edge of the airfoil model, and actuated by a pulsed low-temperature plasma power source. The actuator has two types of layout, a striped electrode layout and a meshy electrode layout.The ice accretion process or anti-icing process was recorded by a CCD camera and an infrared camera. Instantaneous pictures and infrared contours show that both types of DBD plasma actuators have the ability for anti-ice under a freestream velocity of 90 m/s, a static temperature of -7℃,an Median Volume droplet Diameter(MVD) of 20 lm, and an Liquid Water Content(LWC) of 0.5 g/m~3. The detected variations of temperatures with time at specific locations reveal that the temperatures oscillate for some time after spraying at first, and then tend to be nearly constant values.This shows that the key point of the anti-icing mechanism with DBD plasma actuation is to achieve a thermal equilibrium on the model surface. Besides, the power consumption in the anti-icing process was estimated in this paper by Lissajous figures measured by an oscilloscope, and it is lower than those of existing anti-icing methods. The experimental results presented in this paper indicate that the DBD plasma anti-icing method is a promising technique in the future.  相似文献   

15.
《中国航空学报》2016,(5):1237-1246
An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Compared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators' effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry(PIV) and laser Doppler velocimetry(LDV) in the 0.75 m × 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the  3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously suppressed and the maximum lift coefficient is improved at high Reynolds number with the symmetrical plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2° at Reynolds number2 ×10~6. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively largescale disturbance and promote momentum mixing between low speed flow and main flow regions.  相似文献   

16.
牛中国  赵光银  梁华  柳平 《航空学报》2019,40(3):22201-022201
现代战机采用较多的三角翼,在大迎角绕流时存在前缘涡破裂等气动问题。作为新型主动流动控制技术,等离子体激励频带宽、响应快、结构简单、便于闭环控制,在解决三角翼气动问题上具有潜力。回顾了介质阻挡放电(DBD)等离子体气动激励的基本原理,及其用于三角翼前缘涡控制的研究进展。从来流条件、几何构型、激励参数等方面分析了DBD等离子体激励对流动控制效果的影响规律;结合不同激励频率下流场演化特性,分析了流动控制机理。最后,从理论研究和工程应用的角度,对三角翼前缘涡控制的发展进行总结展望。  相似文献   

17.
对等离子体诱导流场特性进行研究,有利于解决双稳态非对称分离涡带来的连续比例控制困难的问题。在封闭光学玻璃箱体内,应用介质阻挡放电等离子体对20°顶角圆锥附近静止大气进行了定常和脉冲循环控制,对等离子体诱导的圆锥截面绕流速度场进行了二维PIV测量,对定常控制和脉冲循环控制下最大绕流速度及最大轴向涡量进行了比较分析。实验结果表明:相对于定常控制模式,脉冲循环控制下沿垂直于圆锥截面对称面径线分布的时间平均切向速度和轴向涡量范围较广;在脉冲循环控制下,动量传递的主要表现在离散涡的形成而不是气流的加速。  相似文献   

18.
In order to promote an in-depth understanding of the mechanism of leading-edge flow separation control over an airfoil using a symmetrical Dielectric Barrier Discharge(DBD) plasma actuator excited by a steady-mode excitation, an experimental investigation of an SC(2)-0714 supercritical airfoil with a symmetrical DBD plasma actuator was performed in a closed chamber and a low-speed wind tunnel. The plasma actuator was mounted at the leading edge of the airfoil.Time-resolved Particle Image Velocimetry(PIV) results of the near-wall region in quiescent air suggested that the symmetrical DBD plasma actuator could induce some coherent structures in the separated shear layer, and these structures were linked to a dominant frequency of f0= 39 Hz when the peak-to-peak voltage of the plasma actuator was 9.8 kV. In addition, an analysis of flow structures without and with plasma actuation around the upper side of the airfoil at an angle of attack of18° for a wind speed of 3 m/s(Reynolds number Re = 20000) indicated that the dynamic process of leading-edge flow separation control over an airfoil could be divided into three stages. Initially, this plasma actuator could reinforce the shedding vortices in the separated shear layer. Then, these vortical structures could deflect the separated flow towards the wall by promoting the mixing between the outside flow with a high kinetic energy and the flow near the surface. After that, the plasma actuator induced a series of rolling vortices in the vicinity of the suction side of the airfoil, and these vortical structures could transfer momentum from the leading edge of the airfoil to the separated region, resulting in a reattachment of the separated flow around the airfoil.  相似文献   

19.
不同压力下微秒脉冲表面介质阻挡放电流场实验   总被引:5,自引:3,他引:2  
采用粒子图像测速(PIV)技术,在不同空气压力条件下,测量了微秒脉冲等离子体气动激励诱导流场的演化过程,分析了不同压力下的流场启动涡、流场结构和壁面射流.根据实验数据计算研究了诱导力随压力变化的空间分布趋势.实验结果表明:常压下和5500Pa压力下产生一个启动涡,19000Pa和11700Pa压力下产生两个启动涡.稳定流场结构随压力减少分别为L型、∽型和V型.压力减小,诱导流场对等离子体气动激励的响应时间减少,射流切向距离变短,距壁面法向距离增加.最大诱导力随压力降低减小,x坐标逐渐向表面介质阻挡放电(SDBD)激励器靠近.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号