首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
TAPS燃烧室燃油喷嘴结构设计特点分析及思考   总被引:6,自引:3,他引:3  
鉴于双环预混旋流器(TAPS)燃烧室技术在CFM56-7B发动机上得到的验证和在GEnx发动机上的成功应用,本文就TAPS燃烧室燃油喷嘴的结构设计特点做了概括性分析,希望对国内的发动机研究有一定的参考价值。  相似文献   

2.
土春 《航空发动机》2006,32(3):30-30
GE公司的航空发动机燃烧室技术经历了单环腔燃烧室→双环腔燃烧室→双环预混(TAPS)燃烧室的发展过程;GENX发动机采用了在TECH56技术计划下研制并验证的最先进的双环预混燃烧室。  相似文献   

3.
双环预混旋流与单、双环腔燃烧室性能对比   总被引:3,自引:3,他引:0  
将中心分级的双环预混旋流(TAPS)燃烧室、单环腔燃烧室(SAC)及双环腔燃烧室(DAC)采用相同的扩压器尺寸、外机匣最大直径以及燃烧室出口尺寸,采用相同的数理模型,对TAPS燃烧室,SAC,DAC进行三维数值模拟.对比研究了TAPS燃烧室,SAC,DAC的总压恢复系数、燃烧效率、燃烧室出口温度分布系数、污染排放等性能参数.研究结果表明:采用TAPS燃烧室,可获得比SAC和DAC更高的总压恢复系数及燃烧效率;比SAC和DAC更低的燃烧室出口温度分布系数及NOx等污染的排放,尤其是设计工况下出口NOx排放.从研究结果来看中心分级的TAPS燃烧室的技术优势十分明显,是一种很有发展前景的高温升、低污染燃烧室.   相似文献   

4.
国外民用航空发动机低污染燃烧室的发展   总被引:4,自引:0,他引:4       下载免费PDF全文
由于地球大气污染加剧,低污染燃烧室的研制成为了制约民用飞机发动机发展的关键技术之一。叙述了ICAOCAEP标准对民用航空发动机污染物排放的规定,以及污染物形成机理和排放控制方法,详细介绍了美国和英国、德国等欧洲航空发动机先进国家研制的多种高效低污染燃烧室,如TAPS、TALON、TVC和ANTLE等。这几种燃烧室的污染物排放水平均比CAEP2标准规定值低50%以上,其研制、发展和使用经验,对中国低污染燃烧室的研制和发展具有重要的参考价值。  相似文献   

5.
越来越严格的环境法规和排放标准的挑战推进了商用航空发动机低排放燃烧燃烧室的演化与发展。GE公司的DAC燃烧室和TAPS燃烧室,PW公司的TALON燃烧室,RR公司的第五阶段燃烧室和Honeywell公司的SABER燃烧室是目前最先进的低排放燃烧室技术。本文综述了当前低排放燃烧燃烧室的技术特点和研究进展,指出了低排放燃烧燃烧室技术的发展趋势。  相似文献   

6.
民用发动机污染排放及低污染燃烧技术发展趋势   总被引:32,自引:15,他引:17  
针对民用发动机污染排放的现状,介绍了低污染燃烧技术发展概况及趋势,国际民航组织(ICAO)颁布的《航空发动机的排放》标准,以及中国民用航空局(CAAC)对排气污染物的规定,分析了排气污染物的生成机理和主要影响因素以及改善措施.对6种先进低污染燃烧室(分级、变几何、催化、贫油预混预蒸发燃烧室(LPP)、富油燃烧/淬熄/贫油燃烧技术(RQL)以及双环预混旋流(TAPS)等燃烧室)的工作原理与特点、以及应用状况作了简要分析.其中分级燃烧技术构成了先进低污染燃烧室设计的技术基础,而LPP,RQL与TAPS燃烧室为三种很有发展前途的低污染燃烧室.此外,还介绍了贫油直接喷射、燃料电池以及主动燃烧控制等三种新型的低污染燃烧技术,虽然实现这些技术难度较大,但有广阔的应用前景.   相似文献   

7.
<正>低污染燃烧室的研发必须满足两条基本原则,一是要遵循低污染燃烧的基本原理;二是要满足燃烧室的基本性能要求。采用贫油直接混合加径向分级燃烧技术的TAPS燃烧室在这两者之间做出了很好的平衡与折衷,而且燃烧效率更高、燃烧室出口温度场更均匀、污染排放更低,能够满足ICAO对2016年后宽体客机发动机NOX排放的目标。随着人们环保意识的增强和全球航空运输业的快速发展,控制民用航空发动机污染物的排放,已成为现代民用航空发动机设计中必须遵循的重要原则。按照国际民航组织  相似文献   

8.
燃油分级比例对TAPS燃烧室性能的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
综合考虑燃烧室对低污染和出口温度分布的需求,对中心分级的TAPS燃烧室流量分配进行了设计和燃烧数值模拟,该流量分配方案采用了不同燃油分级比例。计算结果表明:燃油分级比例对TAPS燃烧室宏观流场结构改变不大,改变3级旋流的流量可影响燃烧室局部当量比,同时能够减小高温区,改善出口温度分布品质,从而大幅降低NOX和CO排放。  相似文献   

9.
保持扩压器尺寸、外机匣最大直径以及燃烧室出口尺寸不变,将燃烧室分别设计为单环腔燃烧室(SAC)、双环腔燃烧室(DAC)、双环预混旋流(TAPS)燃烧室、中心分级燃烧室(CSC)和三旋流燃烧室(TSC)5种燃烧室结构,保持湍流、喷雾、燃烧、辐射及排放数理模型不变,对5种燃烧室进行三维数值模拟.对比研究了5种燃烧室的污染排放性能.结果表明:采用分级燃烧的DAC慢车状态下CO排放量最低,采用DAC在慢车状态下的CO排放量比SAC降低了近62%.采用分层燃烧的TAPS燃烧室的NOx排放量最低,采用TAPS的NOx排放量比SAC降低了近43.5%.   相似文献   

10.
航空发动机燃烧室的现状和发展   总被引:1,自引:0,他引:1       下载免费PDF全文
论述了燃烧室设计中各项技术指标的相互制约,分析了第3、4代发动机燃烧室的技术特点和燃烧室设计及研究方法的新进展.较详细介绍了驻涡(TVC)、富燃-快掺混-贫燃(RQL)、双环腔预混旋流(TAPS)、多喷嘴单元体和陶瓷燃烧室,指出其适用性.主动燃烧控制中更为主要的是出口温度分布系数控制,长远研究应开发快速、灵敏、配置严格的油气管理系统.最后讨论了燃用液氢的可行性.建议应加快CCD与燃烧室目标设计相结合的研发过程.  相似文献   

11.
双环预混旋流低污染燃烧室数值研究   总被引:19,自引:10,他引:9  
利用Fluent软件计算双环预混旋流(TAPS)低污染燃烧室三维两相喷雾燃烧流场,研究两种燃烧室结构和两种喷油方式对流场与燃烧性能的影响,采用标准k-ε模型模拟湍流黏性,离散相模型追踪油珠运动轨迹,燃烧模型采用非预混平衡化学反应模型.计算结果表明:在进口条件不变情况下,改进燃烧室结构和喷油方式,能提高出口温度,同时可大幅降低出口污染物排放;在相同试验条件下,TAPS低污染燃烧室燃烧性能优于目前某在研发动机模型燃烧室.   相似文献   

12.
航改型双环燃烧室燃烧反应特性试验   总被引:3,自引:3,他引:0       下载免费PDF全文
针对地面运输用燃气轮机低排放的要求,试验研究了一种双环预混旋流(TAPS)燃烧室在以0号柴油为燃料时的反应特性。结果表明:采用TAPS燃烧室由于空气分配方式的改变,总压恢复系数在0.97以上,高于经典单环燃烧室。由于柴油黏度和燃点的影响,使用柴油为燃料时最低常压点火油气比高于0.05,要比相同结构采用航空煤油为燃料时的点火油气比高,但慢车贫油熄火极限没有明显的变化,维持在0.006~0.008之间。采用压力雾化的预燃级存在燃料混合不均匀的问题,导致燃烧效率只能达到0.99,为要求值的下限,但燃烧室出口温度分布系数小于0.25,达到了所要求的性能指标。由于采用了预混预蒸发燃烧,污染物排放中NOx的干基体积分数为1.76×10-5,明显低于所要求的性能指标,但CO的干基体积分数较高达到了5.02×10-4。综合比较各项性能指标,该燃烧室在点火、贫油熄火、燃烧室出口温度分布和NOx排放上表现出了一定的优势,但燃烧效率低和CO排放高还是需要解决的问题。   相似文献   

13.
一种模型低污染燃烧室三维两相数值模拟   总被引:2,自引:0,他引:2  
贫油预混预蒸发(LPP)技术是目前最具发展前景的低污染燃烧技术,可实现很低的NOX排放。本文采用FLU ENT软件,对一种模型低污染燃烧室(采用LPP燃烧技术)进行三维两相数值模拟计算分析,研究了模型燃烧室的流场结构、流量分配、回流特性、雾化特性和燃烧性能,并对NOX排放进行了预测。结果表明,模型燃烧室流场中存在与TAPS燃烧室相似的三个涡结构,流量分配与试验吻合良好,雾化特性良好并具有较好的温度场和低的NOX排放。  相似文献   

14.
脉冲爆震涡轮发动机研究进展   总被引:7,自引:5,他引:2  
介绍了脉冲爆震涡轮发动机的基本概念、主要结构形式以及基本特点.详细介绍了国内外研究状况及课题组的最新研究进展,对脉冲爆震涡轮发动机需要突破的关键技术、主要研究内容以及发展途径进行了探讨.研究表明:相比于传统的涡轮喷气发动机,脉冲爆震涡轮发动机的耗油率能降低5%~15%;在相同的燃烧室入口条件下,与等压燃烧驱动涡轮相比,用脉冲爆震燃烧驱动涡轮时的涡轮的单位输出功率要高;实现了由脉冲爆震燃烧室驱动涡轮,涡轮带动压气机给脉冲爆震燃烧室供气的自吸气模式,表明用脉冲爆震燃烧室代替传统等压燃烧室是完全可行的.  相似文献   

15.
涡轮喷气式发动机整机环境下折流燃烧室性能试验   总被引:2,自引:1,他引:1  
采用整机试验的方法,对某型涡轮喷气式发动机从低转速到高转速状态下的燃烧室出口温度进行了测量.结果表明:该折流燃烧室在发动机低转速下性能较差,但各项性能参数随着发动机转速的增加而上升.在发动机设计点状态下,该折流燃烧室各项指标基本符合设计要求,其出口温度分布系数小于0.31,燃烧效率可达98.1%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号