首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
加速度计动态校准装置的研究是在加速度计静态校准的基础上提出的.针对加速度计动态校准领域中在大加速度、低频范围内的校准,本文论述了加速度计动态校准发展现状,主要从校准装置的原理、组成和不确定度分析等几方面进行了研究,最后对该校准装置的下一步研究领域进行了展望.  相似文献   

2.
对线加速度计校准技术的研究进展进行了回顾和评述,包括校准理论、校准方法和相应的校准装置。通过综合研究单一环境参数的加速度计校准技术,阐述了多环境参数的复合环境校准是加速度计校准的主流发展方向,并对国内外加速度计校准技术发展过程中需要解决的关键问题和研究前景做了分析。  相似文献   

3.
高动态、大过载是未来导弹、飞行器的标志性特征,这一特征对惯导系统性能指标尤其是加速度计的性能指标要求尤为严苛.针对此,分析了平台惯导系统加速度计主要非线性误差(标度因数对称性和二次项系数)的传统离心标定方法的缺陷,提出了基于低精度离心机的平台惯导系统加速度计高精度系统级标定方法.该方法是利用惯导系统的速度和位置误差积分作为观测量进行Kalman滤波估计,不仅能对加速度计的非线性误差进行更有效估计,而且能克服传统离心标定方法对离心机的高精度要求.最后通过离心试验验证了该标定方法的有效性,试验结果表明,加速度计非线性误差补偿后的速度和位置误差小于补偿前相应误差的25%.  相似文献   

4.
随着加速度计在地震勘探、轨道交通等领域的广泛应用,横向灵敏度已经成为加速度计校准和实际应用中的重要参数。根据测试加速度向量维度的不同,对现有的加速度计横向灵敏度测试方法进行分类,指出各种测试方法及测试装置在横向灵敏度幅度、频率和方向角测试方面的局限性,并对相关问题的研究进展进行论述,指出加速度计横向灵敏度测试方法的研究方向。  相似文献   

5.
以从俄罗斯引进的低频微g加速度计校准装置为基础,分析了基础振动对微g加速度计校准结果的影响,给出了消除基础振动噪声的方法及在该种情况下加速度计静态数学模型的辨识方法.  相似文献   

6.
提出了一种针对石英加速度计精密离心机试验的显著性分析方法.在多位置方法分离加速度计误差系数时,由于激励不足等试验条件的限制,无法保证高次项系数的标定结果正确.离心机试验利用离心机提供的向心加速度作为仪表的输入,能够标定出高次项系数.为了确定被标定的误差系数均具有可信度,有必要对高过载试验结果进行分析,保留可信的误差系数,证明使用的误差模型无误.由于此方法的通用性,在其他试验条件下的误差分离试验中仍可运用.  相似文献   

7.
分析了高过载对固体火箭发动机流场和绝热层烧蚀的影响规律,提出一种新的研究思路:采用数值模拟方法来预示发动机三维两相流场,建立高过载流场模拟实验装置,开展绝热层烧蚀实验,建立高过载条件下的绝热层烧蚀模型,在此基础上发展高过载发动机绝热层设计和烧蚀预示方法.其中关键技术是高过载流场的模拟,对粒子加入法和弯管分离法两种方案进行了论证,认为弯管分离法原理上是可行的.为了验证这种方案的可行性,开展了弯管通道两相流的数值模拟研究,计算结果表明弯管装置具有使凝相粒子聚集形成高浓度粒子流的功能.  相似文献   

8.
微惯性器件是目前制导战术武器的核心元器件,具有成本低、体积小、寿命长等优点,但是其如何在火炮膛内、侵彻着靶等过程中存活甚至正常工作,一直是各军事大国科研院所发展精确打击制导武器的重要研究方向。查阅了相关国内外文献,然后详细评述了目前关于应用于高过载环境下的微机械陀螺与微机械加速度计研究现状,指出了目前高过载环境微惯性器件的发展趋势与各国的研究进程,为我国发展高过载微惯性器件提供了方向与指导。  相似文献   

9.
Kono.  SF 《惯导与仪表》1999,(1):8-15
用于惯性导航系统(INS)中的三轴加速度计组相对于单个的加速度计有很多优点,由于利用了一体化的功能试验装置,三轴加速度计组的参数具有随时间和温度同时变化的特性,此项技术和装置可建立加速度计组参数之间的相互关系,从而可提高采用三轴加速度计组的ISN误差算法补偿精度。  相似文献   

10.
李江  何国强  陈剑  刘洋  娄永春 《推进技术》2004,25(3):196-198
发展了一种能开展高过载条件下绝热层烧蚀研究的模拟实验方法——收缩管聚集法,研制了收缩管聚集高过载模拟烧蚀实验装置。对实验装置及固体火箭发动机过载条件下的三维两相内流场开展了对比数值模拟,结果表明这种实验装置产生的高浓度粒子流与40g纵横向过载条件下发动机内形成的高浓度粒子流状态很接近,说明这种实验方法是可以模拟高过载条件下绝热层烧蚀环境的。利用这套实验装置开展了高浓度粒子流冲刷条件下绝热层烧蚀实验,对6种绝热材料开展的烧蚀实验表明:所有试件表面均被冲蚀出一个凹坑,说明粒子冲刷对绝热层烧蚀影响很大。凹坑最大烧蚀部位与数值模拟得到的粒子浓度最大部位基本吻合。  相似文献   

11.
李江  何国强  秦飞  刘佩进  陈剑 《推进技术》2003,24(4):315-318
分析了高过载对固体火箭发动机流场和绝热层烧蚀的影响规律,提出一种新的研究思路:采用数值模拟方法来预示发动机三维两相流场,建立高过载流场模拟实验装置,开展绝热层烧蚀实验,建立高过载条件下的绝热层烧蚀模型,在此基础上发展高过载发动机绝热层设计和烧蚀预示方法。其中关键技术是高过载流场的模拟,对粒子加入法和弯管分离法两种方案进行了论证,认为弯管分离法原理上是可行的。为了验证这种方案的可行性,开展了弯管通道两相流的数值模拟研究,计算结果表明弯管装置具有使凝相粒子聚集形成高浓度粒子流的功能。  相似文献   

12.
利用ANSYS软件对一种单轴摆式加速度计的结构进行了有限元分析,得出了各阶模态下加速度计结构的固有频率和振型,找到了处于该型加速度计通频带之内的模态频率。然后,对加速度计进行了结构优化,使各阶模态频率处于通频带之外,为加速度计的结构改进提供了理论依据。  相似文献   

13.
硅微谐振式微加速度计是各种MEMS加速度计中被普遍看好并期待为将来的高精度微加速度计发展的一个重要方向,正在全世界范围内被广泛研究。本文对硅微谐振式微加速度计的发展现状进行了评述。根据国内外不同的技术实现,诸如工作原理、微加工工艺实现、应用范围等对其进行了分类阐述。最后,对硅微谐振式加速度计研究中一些关键技术进行了讨论,并提出了展望。  相似文献   

14.
精密离心机是测试与标定高精度加速度计在高过载下性能的惯导测试设备。精密离心机动平衡系统主要用来减小由不平衡量引起的振动,以提高旋转速率的平稳性和减小对大臂测试半径的影响。针对精密离心机具体结构的特点,为了提高动平衡调整的效率,给出了基于影响系数法的现场动平衡的方法,取得了较好的效果。  相似文献   

15.
介绍了加速度计温度补偿的几种方法,从加速度计的热设计、温度补偿结构设计、改善加速度计工作环境的措施、建立加速度计温度模型等几个方面对加速度计的温度补偿方法进行了分析和研究.  相似文献   

16.
为明确微机械加速度计在振荡输入过程中直流输出的情况,着重分析了静电力反馈电容式微加速度计振荡频率低于微加速度计带宽和在微加速度计带宽附近两种情况下的失衡机理。为说明微加速度计与传统加速度计的整流误差差异,对两种整流误差的情况进行了半定量计算。本文的结论说明了微加速度计与石英挠性加速度计等传统惯性仪表在整流误差方面的区别;在此基础上,引申出由于整流误差决定不同种类的微加速度计有着不同标定要求和适用范围的结论。  相似文献   

17.
介绍了一种摆式大量程加速度计的工作原理.基于经典控制理论完成了加速度计各环节数学模型的建立,对加速度计悬丝支承、力矩器、位移传感器、伺服电路等部件进行了说明,阐述了该大量程加速度计的技术特点.  相似文献   

18.
静电驱动是实现微米光栅加速度计小型化和闭环力反馈控制的关键, 其引 入的静电刚度对加速度计灵敏度有着重要影响。对基于静电刚度的微米光栅加速度计灵 敏度特性进行分析。首先, 建立了基于静电刚度的微米光栅加速度计灵敏度模型。其 次,通过MATLBA 仿真,得到静电驱动电压与传感器灵敏度的理论关系。最后,对理论 分析结果进行了实验验证,结果表明静电刚度可以改善系统刚度,静电电压从1.25V 到 2.05V 等间隔变化时, 加速度计的灵敏度由871mV/g 变化为1148mV/g, 分别相对于未加 电时的灵敏度783mV/g 提高了0.46dB 到1.66dB,提高了微米光栅加速度计的灵敏度。本 文研究内容对集成式闭环微米光栅加速度计的研究提供参考。  相似文献   

19.
加速度计工作过程中,其内部与外界环境存在温度梯度,针对温度变化影响加速度计参数的问题,提出了一种加速度计温控系统被控对象建模的方法。进行了多工作点加速度计升温和降温试验,采用递推增广最小二乘法对被控对象模型进行了辨识,建立了加速度计温控系统被控对象模型和降温模型,计算结果表明,3min后温控系统被控对象模型曲线残差在-0.5~0.5℃之间,降温模型曲线残差在-0.15~0.15℃之间,满足系统对加速度计性能需求,表明了方法的有效性。  相似文献   

20.
减小温度变化对石英挠性加速度计输出的稳定性的影响,对提高惯性导航系统的精度有十分重要的意义。在建立石英挠性加速度计静态温度模型的基础上,采用AFSA对模型参数进行寻优,并给出了详细的建模步骤。结果分析表明,人工鱼群算法能够准确,快速的寻到模型参数。根据所建立的温度模型对加速度计输出进行补偿,加速度计的温度特性有了明显的改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号