首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 75 毫秒
1.
多斜孔壁与机加环气膜冷却燃烧室面换热特性数值研究   总被引:3,自引:2,他引:1  
数值研究了在燃烧室实际工作条件下,多斜孔壁冷却燃烧室和机加环气膜冷却燃烧室的流动、换热特性,比较分析了内、外壁温度场以及冷却流量的变化.研究发现,采用多斜孔壁后,壁面冷却效果得到强化,相比机加环气膜冷却燃烧室,燃烧室前段壁温略有升高,而后段受到气膜冷却效果增强的影响,壁面温度有所降低,壁面温度梯度明显减小.流量系数明显减小,冷却空气量降低23%,用于组织燃烧用气量增加.多斜孔壁冷却技术可以为高温升燃烧室的发展提供有效的冷却技术.   相似文献   

2.
针对旋转爆震发动机(RDE)壁面的高热负荷问题,开展旋转爆震发动机燃烧室壁面气膜冷却的数值仿真,探究气膜出流与爆震波、斜激波和燃烧室流场之间的相互作用以及气膜对壁面的冷却特性。研究结果表明:爆震波对气膜的压缩和冷却孔的堵塞作用明显,气膜对爆震波整体的传播特性影响较小。受爆震波和燃烧室流场的影响,气膜出流存在周期性的摆动情况,这在一定程度上影响了壁面的冷却效果。在爆震波覆盖的壁面区域,峰值壁温下降程度有限,但时均壁温的降幅超过26.9%;在斜激波覆盖区域,随着冷气量的增加,峰值壁温和时均壁温的降幅超过32.5%和51.3%,气膜对该区域壁面的冷却效果更加明显。   相似文献   

3.
随着航空发动机燃烧室性能的提高,燃烧室火焰筒热防护问题显得越来越突出.燃烧室内采用浮动壁结构可以减小壁面热应力,改善火焰筒的受力状况.介绍了火焰筒冷却结构的发展历程,包括气膜冷却、多斜孔冷却和多孔层板冷却,并对它们的优缺点进行了阐述;分析了浮动壁冷却结构的发展状况、技术特点和在浮动壁结构基础上采用冲击/发散气膜复合冷却结构的效率;阐述了浮动壁结构的关键技术(材料、制造工艺和冷却结构特征等);展望了冷却结构和浮动壁火焰筒在未来航空发动机中的应用.  相似文献   

4.
气膜孔倾角对层板隔热屏冷却性能影响   总被引:5,自引:5,他引:0       下载免费PDF全文
刘友宏  任浩亮 《推进技术》2016,37(2):281-288
为了获得气膜孔倾角对层板隔热屏(冲击/发散复合冷却隔热屏)冷却性能的影响规律,基于加力燃烧室真实工况,对0°到90°范围内的十种不同气膜孔倾角的层板隔热屏进行了三维流热耦合数值模拟研究,得到了层板隔热屏冲击壁面Nu数、层板隔热屏气膜冷却表面的冷却效果、层板隔热屏冷流体热负荷及气膜孔流量系数的变化规律。结果表明,气膜孔倾角的变化对冲击壁面Nu数的影响较小;气膜冷却表面的综合冷却效果随气膜孔倾角的增大而减小,15°倾角模型比10°倾角模型的平均综合冷却效果降低2.8%;单位面积冷流体热负荷随气膜孔倾角的增大而增大,最小值比最大值低30.7%;气膜孔倾角对层板隔热屏平均流量系数的影响不大,但上游气膜孔的出流会对下游气膜孔的流量系数产生影响。  相似文献   

5.
为了探究船舶燃气轮机内部冷却通道的颗粒沉积特性,本研究从随压气机抽取的气体进入冷却涡轮内部冷却通道内的颗粒动力学特性及颗粒与壁面相互作用特性出发,基于高温壁面建立速度场影响的沉积模型,利用用户自定义函数实现沉积模型与CFD程序的嵌套。并简化船舶燃气轮机内部冷却通道,选取了在气膜孔与壁面之间夹角β=90°时,下游肋倾角α不同(α=30°,45°,60°,75°,90°),及在下游肋倾角α=60°时,气膜孔与壁面之间夹角β不同(β=30°,45°,60°,75°,90°)的八种不同内冷结构进行数值计算。研究表明,在气膜孔与壁面之间夹角β=90°不变时,随着下游肋倾角由α=90°减到α=30°时,弯头壁面换热性能和沉积率逐渐呈下降趋势,下游肋与肋之间壁面上颗粒的撞击率逐渐上升。下游肋倾角α=60°,气膜孔与壁面之间夹角β=45°的U型肋通道,在八个内冷结构中弯头壁面沉积率最少,换热性能最好,是能够有效改善船舶燃气轮机冷却涡轮的海洋环境工作适应性,减少内部冷却通道中颗粒沉积的内冷结构。  相似文献   

6.
高冷气温度下横向波纹隔热屏气膜冷却特性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
通过三维数值模拟的方法分别研究了高冷气温度下吹风比、开孔率以及孔排布等气动参数和结构参数对加力燃烧室横向波纹隔热屏气膜冷却效率和流动特性的影响规律。结果表明:吹风比改变时相同流向截面处波峰的温度总是高于波谷的温度,且壁面上温度呈现"锯齿状";随着吹风比的增加,隔热屏壁面冷却效率提高,在吹风比M=2.0时冷却效率达到最大值;当吹风比M≥1.5,气膜冷却效率逐渐递增,最后趋于平缓,且吹风比越大趋于平缓的流向间距越短;单位面积冷却流量相同时,气膜孔开孔率?=3.14%对隔热屏壁面的冷却效率最高,其次开孔率为?=2.18%;当单位面积冷却流量Gf≥3.990kg/(m~2·s)时,开孔率?=1.60%比开孔率?=4.90%时对隔热屏壁面的冷却效率高;相同单位面积冷却流量时,气膜孔流向间距增加,展向孔间距减小,气膜叠加效应积聚在壁面处形成有效的气膜层,使得冷却效率趋于一定值对应的流向间距短,气膜孔排布为展向间距p=4mm,流向间距s=6.25mm较其它气膜孔排布冷却效率要高。  相似文献   

7.
多斜孔冷却火焰筒燃烧性能试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了保证高温升燃烧室火焰筒壁温,进行了多斜孔冷却火焰筒燃烧性能试验.通过对多斜孔冷却火焰筒和常规气膜冷却火焰筒的试验对比,研究了多斜孔冷却火焰筒的燃烧性能.研究结果表明:与常规气膜冷却火焰筒相比,多斜孔冷却火焰筒具有冷却空气量少、火焰筒壁温低和温度梯度小等优点;采用了多斜孔冷却方式的火焰筒,其温度场、燃烧效率、火焰筒壁温和慢车贫油熄火油气特性等燃烧性能均达到或超过了常规气膜冷却火焰筒的水平.  相似文献   

8.
冲击距与气膜孔方位角对旋流气膜冷却性能影响   总被引:2,自引:1,他引:1       下载免费PDF全文
刘友宏  任浩亮 《推进技术》2016,37(7):1271-1279
为了获得冲击距Hi与气膜孔方位角α对旋流气膜冷却性能的影响规律,以六边形供气腔圆形气膜孔平板气膜冷却结构为研究对象,对五种冲击距参数(0.74D,1.14D,1.54D,1.94D,2.34D)(D为气膜孔直径)和五种气膜孔方位角参数(0°,10°,15°,20°,25°)进行了三维数值计算研究,得到了绝热壁面气膜冷却效率、展向平均气膜冷却效率、流场空间无量纲浓度分布等随冲击距与气膜孔方位角的变化规律,分析了肾形涡对旋流气膜冷却性能的影响机理。结果表明:冲击距对绝热壁面气膜冷却效率展向分布规律影响不大,而方位角增加能够明显提高绝热壁面气膜冷却效率及展向气膜覆盖面积,方位角0°模型展向气膜冷却效率最大值为0.42,方位角25°模型的最大值为0.48,相比前者增加14.3%;绝热壁面同一流向位置的展向平均气膜冷却效率随冲击距的增加而增大,随方位角的增加而增大,Hi=2.34D时的展向平均气膜冷却效率最佳,α=20°时的展向平均气膜冷却效率曲线最佳。方位角的增加能够明显破坏流场中存在的肾形涡结构。  相似文献   

9.
为了研究回流燃烧室内部火焰筒的燃烧和冷却性能,建立了回流燃烧室模型,通过热流固耦合仿真分析其失效原因。通过引入不同孔型和不同孔倾角的气膜孔,与初始结构故障件的冷却效果进行对比分析。结果表明:原结构件最高温度和最高温度梯度的位置与实际故障件的失效位置相同,可认为失效原因是高温和高温度梯度共同导致的;改变孔结构后回流燃烧室壁面最高温度相对于原结构均下降,最多下降了281.34 K,最少下降了60.15 K;当采用同一种孔型时,孔倾角为30°的冷却效果最好,孔倾角为60°的冷却效果最差;当孔倾角相同时,收敛孔的冷却效果最好,因为在孔出口附近的截面上产生了一个与原旋涡对反向的旋涡对,从而改善冷却效果,柱形孔的冷却效果最差。  相似文献   

10.
本文针对涡轮叶片离散气膜孔结构及叶片表面具有不同曲率的特点 ,采用传质比拟、数值计算及可视化技术 ,通过比较平板、弯曲壁面及涡轮叶片的气膜冷却流动及传热特性 ,系统地研究了离散孔三维效应、壁面曲率及压力梯度诸因素对叶片气膜冷却的影响。在此基础上 ,提出了估算叶片头部、中弧区及尾缘气膜冷却有效温比的准则公式、实验曲线及计算机程序  相似文献   

11.
为了更加合理地分配冷却气体流量,提高纵向波纹板隔热屏结构的气膜冷却效率,提出了非均匀孔排布局波纹板隔热 屏结构,即保持开孔率不变,构建了上游波纹结构气膜孔排布密集、下游波纹结构气膜孔排布稀疏的非均匀结构。在发动机真实 工况下,采用数值仿真的方法研究了非均匀孔排方式对沿程冷却气体流量分配特性和气膜冷却特性的影响规律,揭示了振幅比变 化对波纹板隔热屏冷却效果的影响规律。结果表明:前密后疏型非均匀孔排布局可以改变冷却气体在隔热屏不同位置处的出流 量,从而显著提高隔热屏的气膜冷却效率。在气膜孔孔参数以及开孔率不变时,增大隔热屏上游孔排密度既可以提高隔热屏上游 的冷却效果,又不会明显降低隔热屏下游的冷却效果,使隔热屏整体面平均气膜冷却效率有所提高,相比于均匀孔排结构,前密后 疏孔排布局最高可使隔热屏面平均气膜冷却效率提高12.66%;在相同工况下,当振幅比从0.035增大至0.075时,隔热屏的面平均 气膜冷却效率显著提高,最高可使其面平均气膜冷却效率提高16.32%。  相似文献   

12.
为了分析扰流柱对冲击冷却效率的影响,采用数值模拟方法对穹顶形扰流柱冲击冷却系统进行研究,获得其换热与流 动特性,并与平板靶板冲击冷却系统和圆形扰流柱冲击冷却系统进行对比分析。结果表明:穹顶形扰流柱冲击冷却系统可以同时获 得良好的换热效果与较小的流动阻力系数。与圆形扰流柱靶板相比,穹顶形扰流柱靶板的Nu 增大了13.8%,而流动阻力却减小了 5.3%;其综合换热效率提高了17.9%。从综合换热效率的角度看,穹顶形扰流柱冲击冷却系统优于平板靶板冲击冷却系统和圆形扰 流柱冲击冷却系统。  相似文献   

13.
AnalysisofCoolingFanLeakage通过对因冷却风扇漏油导致两次拆下APU事件的分析,总结了排放过程的经验,以供同行参考。汕头航空公司机务人员在进行波音737/2911飞机的维护(过站、航后)时,经常发现APU的余油管漏油,打开APU的下罩检查,仅发现APU的本体有很多油,下罩也积了很多猫稠的油,始终没有发现具体的漏点,从余油的形态和颜色来看,初步认为漏的是滑油。因此决定定期检查APU的滑油量,在检查的同时,查找漏油处。在定期检查中发现APU的滑油量时有减少,正是因为坚持不懈地查找和对APU滑油量的监控,既保证了APU的正…  相似文献   

14.
针对带起始气膜的大弯管发散冷却特性开展了三维数值模拟,对有无起始气膜的大弯管发散冷却结构进行了对比分析,并开展了主流速度、开孔率等参数对带起始气膜的大弯管发散冷却特性的影响研究。结果表明:带起始气膜的大弯管发散冷却结构能有效地改善无起始气膜的大弯管发散冷却结构前端冷效低的缺点,显著提高了大弯管整体的温度分布均匀性,平均综合冷却效率可提升10.8%-15.4%;主流速度的增大会增强主流与大弯管壁面的对流换热,引起壁面温度升高;开孔率的增加使得大弯管整体的冷却效率呈上升趋势,单位面积冷气流量的增加减小了开孔率带来的差异。  相似文献   

15.
吴青  谭晓茗  田佳  张靖周 《推进技术》2021,42(4):941-949
针对高热流密度燃烧室壁面热防护需求,提出了一种空气阵列射流冲击和燃油冷却肋板的集成冷却方式,在射流平均雷诺数Rej为1×104~3×104,燃油进口流速vf为2.33~5.23m/s内,采用数值模拟方法对其传热特性进行了研究,并基于壁面加热侧当量对流换热系数的概念,分析了基准肋板以及燃油冷却肋板的传热增强作用。与无肋板靶面的阵列射流冲击相比,带肋板阵列射流冲击的面积平均当量对流换热系数是前者的1.6倍,压力损失系数相对提高了约25%;采用燃油冷却肋板,加热壁面综合传热能力进一步增强,在Rej=1×104时,采用燃油冷却肋板的面积平均当量对流换热系数是基准肋板的1.5倍以上,即使在Rej=3×104时,燃油冷却肋板的传热增强比也可以达到1.2;燃油冷却肋板的出口温度相对进口温度的提升在20~50K内,其提升幅度随着射流雷诺数或燃油进口流速的增大而减小。  相似文献   

16.
弯曲壁面冲击加发散冷却结构的冷却效果实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究双层壁压降分配对弯曲壁面冲击加发散冷却效果的影响,针对回流燃烧室大弯管双层壁冷却结构,保证相同当量开孔率通过调整冲击孔壁和发散孔壁的有效开孔面积之比得到了不同压降分配的冷却方案,并提出了一种六边形排布方式,选取4种冷却结构进行了冷却效果实验研究。研究表明:在相同的冷热侧进气条件下,冲击孔壁压降分配比例由19%增加至71%时,常规菱形排布结构的平均冷却效率可以提高29%,而六边形排布结构的平均冷却效率可以提高36%以上;另外,加温比对冷却效率影响较小。  相似文献   

17.
以平行入射缝槽气膜冷却为研究对象,开展了主、次流分别为亚声速和超声速流动状态下的气膜冷却数值模拟。计算结果表明:对于主流为超声速、次流为亚声速的气膜冷却,主流热量和动量很快就输运到亚声速次流中,气膜核心区很快被破坏,气膜冷却效率不高;在主流为超声速流动的情况下,施加相同吹风比的超声速冷却次流可将其核心向下游更远的地方输运,与常规的亚声速气膜冷却结构类似。为了获得较高的气膜冷却效率,在主流为超声速流动的情况下,建议施加超声速次流进行气膜冷却。  相似文献   

18.
对自发汗冷却材料的种类及特点进行了简介,综述了自发汗冷却材料的几种主要制备方法及其优缺点,详细阐述了自发汗冷却材料的研究现状、影响因素及其应用,并对其发展方向进行了讨论.  相似文献   

19.
3D ANSYS CFX conjugate calculation was carried out to compare cooling effectiveness of the high pressure turbine vane platforms with the film cooling and the convection-film cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号