首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 58 毫秒
1.
预旋角度对预旋孔流动特性的影响   总被引:10,自引:10,他引:0  
对预旋角度分别为30°,25°,20°和15°的预旋孔在压比1.1~1.9范围内的流量系数进行了实验测量和数值模拟。研究了压比和预旋角度对预旋孔进出口速度和气流角度、流量系数和预旋效率等参数的影响。流量系数的实验结果与计算结果符合良好,数据显示预旋孔流量系数和预旋效率随压比的增大显著增大。预旋角度的减小使流量系数基本保持不变,而预旋效率由于出气角度的减小而显著增大,最大增幅可达10%。  相似文献   

2.
预旋喷嘴作为预旋系统中的重要元件,其性能优劣直接关系到预旋系统的温降效果。在保持喷嘴几何出气面积不变的条件下,对预旋角度为12°,无量纲叶高分别为0.12,0.25,0.5,1和2的叶型喷嘴在压比1.1~1.9范围内进行了数值模拟。计算域包含进气腔、预旋喷嘴和出气腔,研究内容包括速度场、出气速度、出气角度、流量系数和预旋效率。对比了直孔型喷嘴、扩口孔型喷嘴以及叶型喷嘴的性能差异。结果表明叶型喷嘴的流量系数和预旋效率比直孔型喷嘴均增大20%以上,预旋效率比扩口孔型喷嘴略微增大5%左右。叶型喷嘴的流量系数和预旋效率均随压比的增大而增大,随无量纲叶高的增大先增大后微弱减小;叶型喷嘴的无量纲叶高低于0.5时,流量系数和预旋效率将显著减小。  相似文献   

3.
扩口孔型预旋喷嘴流动与温降特性   总被引:4,自引:4,他引:0       下载免费PDF全文
刘高文  张林  李碧云  冯青 《推进技术》2013,34(3):390-396
分别对预旋角度为20°的直孔和扩口孔型喷嘴进行了数值模拟和实验测量.计算模型包括仅有进气腔、预旋孔和出气腔的单独模型和在此基础上增加了旋转部分的系统模型;研究内容包括速度场、出气速度、出气角度、流量系数、预旋效率和温降,并对单独模型的孔流量系数进行了实验测量.结果表明流量系数的计算结果与实验结果符合良好,扩口孔的流量系数、预旋效率和温降都比直孔显著增大20%以上.数据还显示由单独模型计算得到的流量系数和预旋效率与由系统模型得到的结果比较接近,根据单独模型的预旋效率而推算出的温降可在一定程度上间接反映预旋系统的温降特性.  相似文献   

4.
带盖盘45°预旋系统流动特性的实验   总被引:1,自引:0,他引:1       下载免费PDF全文
对带盖盘45°预旋系统的预旋腔和转静腔内流动特性进行了实验研究,得到了高转速下静盘表面的静压分布、中心面(z/S=0.326)总压分布、流阻系数以及预旋孔排气系数的变化规律。结果表明:流量分配对腔内压力分布影响较小;湍流参数是腔内流动特性的主要影响参数之一;腔内流动结构主要分为转静腔的自由涡结构以及预旋腔的回流区和低压区;流阻系数随湍流参数变大而显著上升;预旋孔排气系数随着进、出口压比增加而增加。   相似文献   

5.
预旋结构影响带盖盘预旋系统流动的实验   总被引:3,自引:1,他引:2       下载免费PDF全文
为探究预旋结构如何影响盖盘系统内的流动特性,对不同预旋角度和进气位置的带盖盘预旋系统进行实验研究,得到了高转速下静盘表面静压和中心面总压的分布、中心面旋流系数、预旋孔排气系数以及腔内流阻系数。结果表明:预旋角度和进气位置分别影响腔内压力分布大小和分布趋势。随预旋比增加中心面旋流系数整体增加,转静腔内旋流系数与无量纲半径的-2次幂存在线性关系。预旋孔排气系数随预旋孔进出口压比的增加而增加。流阻系数随湍流参数增大而上升,随旋转雷诺数的增加而减小。  相似文献   

6.
叶型预旋喷嘴流动及温降特性实验与计算研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了研究转速、压比、雷诺数对叶型喷嘴流量系数及盖板式预旋系统温降的影响,介绍了在压比1.1~1.5,转速0~10kr/min条件下稳定运行的预旋系统旋转实验台。通过实验测量预旋系统内的温度和压力分布,对比分析了两种叶型预旋喷嘴(叶片式喷嘴和叶孔式预旋喷嘴)的性能差异,并采用数值计算揭示喷嘴流动损失及预旋系统温降机理。结果表明,叶孔式预旋喷嘴与叶片式预旋喷嘴流量系数均随压比的增大而增大;随雷诺数的增大先逐渐增大,当Re2×105,流量系数基本不变。系统温降效率随着压比的增大逐渐增大;压比1.5时,温降随转速增大先增大后减小,存在一个极值。叶孔式预旋喷嘴流量系数与叶片式喷嘴流量系数相差不大,约为0.95;但叶孔式喷嘴可以减小端壁二次流损失和尾迹损失,降低喷嘴出口落后角,提高喷嘴出口旋转比和系统温降效率。压比1.5,转速8.1kr/min时,叶孔式预旋喷嘴系统温降效率比叶片式喷嘴的提高了40%。  相似文献   

7.
预旋喷嘴流动特性试验研究   总被引:2,自引:2,他引:0  
本文根据某型预旋喷嘴设计了试验件,并通过真实尺寸预旋喷嘴流动特性试验,获得了预旋喷嘴流量系数随压比的变化曲线和出口总压沿栅距的变化曲线.结果表明,试验结果与设计值基本吻合,为某型预旋喷嘴设计提供了重要的技术支持.  相似文献   

8.
郑笑天  王锁芳  韦光礼 《推进技术》2020,41(10):2222-2227
为对比不同形状接受孔的预旋系统内气流流动特性,通过数值模拟方法,对带有不同形状接受孔的预旋系统进行了研究。研究发现:收缩型接受孔入口截面气流流通面积较大,相对速度较小,在预旋系统中的性能最优,其次是类梯型,最后是直孔型。同一旋转雷诺数下,带收缩型接受孔的预旋系统无量纲温降较直孔型提高5.8%,总压损失系数降低3.0%。三种类型接受孔的预旋系统无量纲温降和总压损失系数均随进出口压比的增加而增大,在相同压比下,收缩型接受孔预旋系统无量纲温降最大,总压损失系数最小。  相似文献   

9.
叶型孔式预旋喷嘴流动特性数值研究   总被引:6,自引:6,他引:0       下载免费PDF全文
现有研究表明叶片式喷嘴是目前为止性能最好的预旋喷嘴。而在整环的喷嘴盘设计中,当喷嘴总面积、预旋角度、喷嘴数目和半径位置确定后,喷嘴叶高和栅距就固定下来,往往因为叶高与栅距的比值过小而大大降低喷嘴性能。在叶片式喷嘴基础上提出了一种能够调整喷嘴叶高到恰当值的新型预旋喷嘴——叶型孔式喷嘴(vane shaped hole nozzle,vsh nozzle)。采用数值方法深入对比研究了叶型孔式喷嘴与叶片式喷嘴的性能差异。为了考虑喷嘴下游预旋腔的掺混影响,计算域不仅包括静止的进气腔和喷嘴,还包括转动的预旋腔和接受孔。计算结果表明,叶型孔式预旋喷嘴的流量系数和预旋效率显著高于叶片式喷嘴,vsh-52喷嘴的流量系数比vane-52喷嘴高9.14%,预旋效率高4.44%。还提出采用有效流量系数、有效预旋效率两个参数来体现考虑喷嘴下游预旋腔掺混影响的喷嘴综合性能。  相似文献   

10.
接受孔角度对预旋系统流动特性影响的数值研究   总被引:4,自引:4,他引:0       下载免费PDF全文
陈帆  王锁芳  张光宇  王海 《推进技术》2018,39(7):1549-1555
为研究接受孔对预旋系统流动特性的影响,基于简化的三维模型,对接受孔角度为0°~60°的预旋系统进行了稳态数值模拟。结果表明,当气流周向速度高于接受孔旋转速度时,随着接受孔角度的增加,接受孔处的漩涡逐渐消失,有效流通面积增加。当气流周向速度低于接受孔旋转速度时,随着接受孔角度的增加,产生的漩涡逐渐变大,接受孔对气流的导向作用加强。随着接受孔角度的增加,接受孔附近气流的静温以及静压均减小,预旋系统无量纲质量流量和温降系数均增大,预旋系统总压损失系数呈微弱的上升趋势。接受孔角度从0°增至60°时,预旋系统温降系数增大了22.7%,总压损失系数增大了1.31%。  相似文献   

11.
陆禹铭  徐倩楠  吴锋  张海 《推进技术》2020,41(9):1999-2010
为减小整个预旋系统的流动损失,首先对带预旋集气腔进气孔、预旋集气腔、预旋喷嘴的冷气预旋流路进行了分析,发现进气孔和集气腔会导致预旋喷嘴进口流场不均匀,相较于进口均匀条件,预旋喷嘴总压损失系数增大0.026。在此基础上提出了一种将预旋集气腔进气孔、预旋集气腔和预旋喷嘴融合设计的低损失融合式预旋喷嘴设计方案,分析表明:融合式预旋喷嘴能有效减小冷气在预旋系统内的流动损失,在设计工况总压损失系数减小0.032,并使冷气在预旋系统内流动更加均匀,提升了预旋系统的整体性能。  相似文献   

12.
为了获得一种具有直通式冷气预旋进气系统的小型燃气轮机涡轮叶片的流动与换热特性,采用气热耦合计算方法进行数值研究,分析了总压损失、冷却效果和涡轮效率随预旋角、冷气雷诺数和无量纲质量流量的变化规律。结果表明,涡轮叶片预旋进气冷却的总压损失随冷气雷诺数和无量纲质量流量的增大而增大,但基本不受预旋角大小的影响;涡轮叶片的冷却效果随预旋角的减小、冷气雷诺数或无量纲质量流量的增大而增强,但不会改变其表面的温度分布特征;预旋进气冷却时的涡轮效率随冷气雷诺数的增大、预旋角或无量纲质量流量的减小而提高。  相似文献   

13.
带盖板预旋系统的流动实验   总被引:7,自引:4,他引:3  
何振威  冯青  刘松龄  许都纯  刘高文 《推进技术》2011,32(5):654-657,689
通过低转速的模拟实验对涡轮盘腔的带盖板预旋系统的流动特性进行了研究。在不同的紊流参数(0.5〈λT〈0.96)和旋转比(1.03〈βp〈1.9)下测量了预旋腔和盖板腔内的压力与速度分布,得到了两个腔内的旋转比变化情况,并分析了旋转雷诺数和进出口压比对预旋喷嘴流量系数的影响。实验结果表明:在两个腔内离心升压效应明显,预旋喷嘴出口气流对预旋腔内的气流压力和速度的影响要远大于接收孔出口气流对盖板腔的影响,压比和旋转雷诺数对喷嘴流量系数有较小的影响。  相似文献   

14.
预旋系统稳态和非稳态计算对比研究   总被引:1,自引:0,他引:1       下载免费PDF全文
梁靓  刘高文  雷昭  冯青 《推进技术》2019,40(11):2546-2553
针对预旋系统由于旋转引起流场和温度场参数周期性瞬态变化的问题,分别采用滑移网格的瞬态法和固定转子相位的稳态法进行数值求解,并在稳态计算中通过改变转子相位来近似模拟非稳态问题的时空变化特性。通过稳态空间平均结果与非稳态时均结果的对比,以期为预旋系统非稳态问题的低成本求解提供方法依据。结果表明:稳态计算结果与非稳态计算结果相比,周期性波动频率一致,接受孔进口处,稳态计算的压力波动幅度小39%左右,温度波动幅度小15%左右;多个相位的稳态空间平均结果与非稳态时均结果相比,压力高0.2%,温度低0.1%;采用多个计算周期数与单个周期的非稳态计算结果差异微小。当采用喷嘴出口气流中心正对接受孔迎风面前缘的转子相位时,稳态计算结果与非稳态计算时均结果最接近。  相似文献   

15.
王欣欣  刘高文  龚文彬  冯青  梁靓 《推进技术》2020,41(12):2748-2756
为获得封严流对预旋供气系统温降特性的影响,基于三维稳态数值模拟方法,针对内封严出气流量,内封严进气流量,内封严进气温度和内封严进气旋转比四个因素进行了研究。结果表明:在保持供气流量和供气压力一定的条件下,封严流流出预旋腔对预旋供气系统温降特性影响微小;而封严流流入预旋腔的影响显著。内封严进气流量从0增大到喷嘴流量的20%时,温降效率降低31.3%;内封严进气温度升高37K时,温降效率降低29.2%;内封严进气旋转比从0提高到0.8时,温降效率提高15.6%。  相似文献   

16.
吴衡  刘高文  冯青  武志鹏 《推进技术》2019,40(10):2252-2261
对预旋系统内的压力变化相关研究较少。基于理论分析、实验测量以及数值计算,对某盖板式预旋系统的压比及熵增特性进行研究。通过理论推导,对预旋系统内压比与无量纲温降的关系进行分析。在最高转速可达10000r/min的高转速实验台上,测量了转盘上的气流静压以及相对总温,进而获得压比及熵增特性。进行三维数值计算,将数值计算结果与实验结果进行了对比,并根据数值计算结果对预旋系统内的熵产分布以及各元件的熵增情况进行分析。结果表明:系统温降以及旋转马赫数大小决定了预旋系统的理想最大压比,而实际压比与理想压比的比值取决于系统内的熵增大小。采用数值计算以及实验测量所得结果对理论关系式进行了验证,最大偏差2.7%。旋转马赫数一定的条件下,随系统无量纲温降增大,系统压比逐渐减小。由于熵增影响,实测压比与理想压比最大相差约36%。预旋系统内的熵增主要发生在预旋腔静止壁面、接受孔前后、供给孔进口等气流旋转比发生剧烈变化的区域。预旋系统内主要元件的熵增随流量增大都呈逐渐增大的趋势,但接受孔处熵增最小值出现在喷嘴出口旋转比等于1左右时,流量过小或过大都会导致接受孔处熵增变大。  相似文献   

17.
为揭示流阻元件的流动损失机理,本文从热力学理论出发,建立了流阻元件的质量流量模型和熵产模型,分析了质量流量与熵产之间的关系,研究了熵产随系统压比和进口总压的变化情况,并通过预旋喷嘴和篦齿封严的实验结果对两个模型进行了分析评估。结果表明,质量流量模型与实验结果的最大偏差不超过2.8%;熵产模型与实验结果的最大偏差不超过1.9%。系统熵产随系统压比的增加而增大,随进口总压的增加而减小。当系统的进口总压,进口总温和出口静压不变时,模型中的参数a是衡量不同元件熵产大小的唯一量度。  相似文献   

18.
预旋进气小尺寸涡轮叶片冷却的流场研究   总被引:1,自引:1,他引:0  
为了了解和掌握一种具有直通式冷气预旋进气系统的小型燃气轮机涡轮转子叶片的流场,在旋转雷诺数Reθ=4.66×106和冷却空气的无量纲质量流量Cw=1750时改变预旋角θ的大小,使其在15°~90°变化,通过数值研究得到了预旋角对涡轮盘腔、连管和涡轮叶片内冷却空气的流动以及叶栅通道中燃气的流动的影响。结果表明:(1)预旋角的变化会改变涡轮盘腔、连管和涡轮叶片冷气进口附近局部区域的流场,但是对涡轮叶片内其它区域和叶栅通道中的流动基本没有影响。(2)随着预旋角的增大,涡轮盘腔内预旋进气冷气射流的轴向穿透深度先增大后减小;当θ<45°时冷却空气沿外围屏流向转盘接收孔,而当θ>45°时冷却空气沿内围屏流向转盘接收孔;气流的周向速度随着预旋角的增大而减小。(3)垂直进气时连管内存在多个回流区和很大的涡流,流动损失较大,而采用预旋进气能够减弱或消除这些流动结构,存在最优预旋角θopt,θopt≈45°,此时连管的有效流通面积最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号