共查询到19条相似文献,搜索用时 62 毫秒
1.
针对中介轴承故障振动信号具有传递路径复杂、强背景噪声干扰等特点,其故障特征不易提取的问题,提出基于自适应噪声完全经验模态分解(CEEMDAN)与灰狼算法(GWO)优化的极限学习机(ELM)相结合的中介轴承故障诊断方法。利用CEEMDAN和相关系数-能量比-峭度准则(CEKC)对振动信号进行分解、筛选、重构;再提取重构信号的时域和频域特征构成特征矩阵;然后以平均错误率作为GWO的适应度值,对ELM的输入层与隐含层的权值和隐含层阈值进行优化后重新构建ELM;最后将特征矩阵输入ELM得到故障诊断结果。应用于中介轴承故障诊断中,ELM在GWO优化后故障诊断正确率有明显提升,其中45°方向传感器数据正确率由93.33%提升到99.17%。结果表明:该方法能够有效诊断中介轴承故障类型,表现出了较强的泛化能力。 相似文献
2.
通过技术手段准确识别航空网络的关键节点,对航空网络平时的正常运行以及战时的防御和修复,具有重要的理论意义和参考价值。提出一种基于核极限学习机的航空网络关键节点识别方法,首先,采用层次分析法对节点综合重要度进行评估;然后,选取三个简单指标,基于核极限学习机学习简单指标与综合重要度之间的映射关系,建立重要度评估模型;最后,以中美两国航空网络为例进行仿真。结果表明:仅需计算 40 个节点的复杂指标值,就可对关键节点取得较满意的辨识效果,降低了计算复杂度,提高了辨识效率,即采用本文方法辨识航空网络的关键节点是有效、可行的。 相似文献
3.
针对解析法建立涡扇发动机加速过程模型精度和实时性不高的问题,提出了一种基于粒子群核极值学习机(PSO-KELM)的涡扇发动机加速过程模型数据驱动辨识方法,构建涡扇发动机加速过程模型,结合加速过程试车数据,利用PSO-KELM方法对该加速模型进行辨识。试验结果表明:低压转子转速、高压转子转速和低压涡轮出口燃气总温都较好地逼近了试车数据,最大相对误差均值分别为1.013%,0.355%和1.055%,平均计算时间为0.04ms。精度和实时性均优于反向传播神经网络和粒子群支持向量回归方法,可用于发动机状态监控和性能优化控制。 相似文献
4.
运用传统单隐层的神经网络进行航空发动机部件故障诊断识别受其浅层结构影响,精度不高,而用深度置信网络(Deep belief network,DBN)等深度学习方法则存在耗时、参数训练复杂的问题。为解决现有的基于数据驱动的发动机部件故障诊断方法的不足,提高诊断精度,缩短训练时间,将核方法和多层极限学习机(Multilayer extreme learning machine,M-ELM)相结合,提出一种深度核极限学习机(Deep kernel extreme learning machine,DK-ELM)。算法首先利用深度网络结构对输入数据进行逐层的特征提取,抽象得到的特征通过核函数实现高维空间映射分类。这些措施有利于提高算法的分类精度和泛化性能,在训练速度上较深度学习也有明显的提高。将该算法与深度学习和其他极限学习机算法进行综合比较研究,结果表明:基于DK-ELM的诊断方法有效、可靠,便于实现,为航空发动机部件故障诊断提供一个更为优秀实用的工具。 相似文献
5.
机载燃油泵的性能退化呈现非线性多阶段模式,为了提高机载燃油泵性能退化指标的预测精度,得到性能退化指标准确的预测范围,提出了基于奇异值分解-模糊信息粒化与优化极限学习机的模糊粒化预测方法。针对传统的粒化预测方法直接对原始序列进行粒化分析的不足,首先利用奇异值趋势分解方法提取燃油泵性能退化指标序列的趋势项及去趋势项,再利用信息粒化方法对去趋势项进行模糊粒化;然后将趋势项及粒化后的去趋势项数据输入至极限学习机进行回归预测,并采用粒子群算法优化极限学习机参数;最后根据实测值和预测值的对比分析评估预测模型的优良性。实验结果表明,该方法可以有效跟踪燃油泵性能退化指标的变化趋势,并对其指标的波动范围进行有效预测。 相似文献
6.
针对涡轴发动机控制系统设计,提出了1种基于在线滚动序列核极限学习机的非线性模型预测控制方法。综合考虑直升机旋翼扭矩、燃气涡轮转速、动力涡轮转速、涡轮级间温度和压气机喘振裕度等信息,设计具有较好实时性、精度和泛化能力的多输出在线滚动序列核极限学习机作为预测模型,引入预测模型输出与发动机输出的误差进行反馈校正,利用序列二次规化算法在线求解包含限制约束的预测控制问题。在某型直升机/涡轴发动机综合平台的仿真环境中进行了直升机大幅度机动飞行仿真验证,结果表明:该模型预测控制器相比于传统串级控制具有更好的控制品质,可显著降低动力涡轮转速超调/下垂量。 相似文献
7.
针对无卫星信号环境中单兵人员导航定位需求,设计了一种基于自包含传感器的单兵导航系统,重点研究了惯性传感器和压力传感器组合的零速区间检测算法,并通过对单兵导航系统背景磁场误差进行补偿来计算航向角,实现了速度观测量和航向观测量的准确提取。在此基础上,采用Kalman滤波器对系统状态误差进行估计,并对惯性导航解算结果中的累积误差进行修正。最后,在实际路线上开展了单兵导航系统定位实验,实验结果表明,行人在矩形路线终点位置处的位置误差为0.42m,占行走总路程的0.33%,从而证明了零速修正和航向修正能有效提高单兵导航系统的定位精度。 相似文献
8.
针对航空发动机推力不可测,部件级模型求解推力精度不高、实时性差的问题,提出了基于快速寻找密度极点聚类与粒子群极限学习机的航空发动机推力估计方法。首先利用基于快速寻找密度极点的聚类算法对全工况范围内的台架试车数据聚类,然后在每一个子类中,用粒子群极限学习机设计了子推力估计器。在子类推力估计过程中,为使网络拓扑结构最优,用粒子群算法寻找极限学习机的最优隐层神经元数目的方法。训练与测试表明,推力估计测试相对误差最大值为3.06‰,优于传统的RBF(7.25‰)与BP(14.84‰)神经网络方法,能够满足直接推力控制与机载在线实时状态评估的需求,且可将方法扩展到其他不可测参数的估计。 相似文献
9.
为充分发挥航空推进系统的性能,提高性能寻优控制的实时性,将樽海鞘群算法(SSA)与极限学习机(ELM)相结合,基于进/发一体化部件级模型建立数据集,提出一种基于SSA-ELM的数据驱动模型。将该建模方法与广义回归神经网络(GRNN)、BP神经网络(BPNN)和极限学习机(ELM)比较,结果表明,相比于BPNN,ELM,GRNN,SSA-ELM用于预测可以使安装推力的均方根误差(RMSE)分别降低7.41%,17.01%,72.57%,安装油耗的RMSE分别降低4.32%,19.41%,66.77%,具有更高的预测精度。将基于SSA-ELM的数据驱动模型作为机载模型应用到性能寻优控制,结果表明,该机载模型能够维持理想的寻优效果。针对最大安装推力模式开展实时性分析,该机载模型相比于进/发一体化部件级模型,平均计算时间由184.05 ms缩短至1.357 ms,实时性得到显著改善,大大提高了寻优效率。 相似文献
10.
鉴于航空发动机直接推力控制与健康管理需要高精度及高实时性的推力估计器,提出了一种基于K-均值聚类与粒子群优化的核极限学习机推力估计方法。采用K-均值聚类对全工况范围内的测量数据进行聚类,在每一个子类中,通过核极限学习机建立推力估计器,采用粒子群算法对核极限学习机的核参数和惩罚系数进行优化,利用了核极限学习机稳定性好、非线性拟合能力强的特点,实现了对发动机推力的估计。经涡扇发动机台架试车数据训练与测试表明,本推力估计方法平均预测时间为0.27ms,实时性满足机载在线状态评估和直接推力控制需求,且在估计精度上较现有方法存在一定优势。 相似文献
11.
12.
13.
为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构,完成了对输入样本的特征提取,通过核函数实现了高维空间映射分类。数字仿真表明:算法分类正确率高,训练时间短,可应用于航空发动机控制系统的故障诊断。 相似文献
14.
In order to further study the performance of tightly integrated navigation system of GPS/INS, a semi-physical simulation of tightly coupled system has been done based on the data gathered from the experiment of integrated system of GPS and INS. The closed-loop Kalman Filter and U-D discompose algorithm have been used. The simulation results associated to four integrated models of pseudo-range, delta-range, pseudo-range and delta-range alternation, and pseudo-range and delta-range synthesis have been provided, and the actual effects of variously integrated models have been analyzed. The results show that the pseudo-range and delta-range synthesis coupled model is the most effective to improve the coupled system performance and the individual delta-range coupled model had better be avoided in application. 相似文献
15.
In order to further study the performance of tightly integrated navigation system of GPS/INS, a semi-physical simulation of tightly coupled system has been done based on the data gathered from the experiment of integrated system of GPS and INS. The closed-loop Kalman Filter and U-D discompose algorithm have been used. The simulation results associated to four integrated models of pseudo-range, delta-range, pseudo-range and delta-range alternation, and pseudo-range and delta-range synthesis have been provided, and the actual effects of variously integrated models have been analyzed. The results show that the pseudo-range and delta-range synthesis coupled model is the most effective to improve the coupled system performance and the individual delta-range coupled model had better be avoided in application. 相似文献
16.
基于NN-ELM的航空发动机燃油系统执行机构故障诊断 总被引:3,自引:1,他引:2
提出了一种航空发动机执行机构及其传感器单一故障诊断及定位方法.首先通过执行机构模型判断是否发生故障,然后运用发动机逆模型对故障进行定位.基于离线训练BP(back propagation)神经网络建立执行机构模型,根据某半物理仿真试验台的测试数据训练网络参数.提出离线训练和在线训练相结合的极端学习机(ELM)算法建立发动机逆模型,使网络在初始时刻就具有诊断能力,工作过程中具有适应能力,且在线训练过程采用阈值判别法筛选训练样本,减小了在线训练时间,提高了逆模型的实时性.以某型发动机燃油系统执行机构为例的设计和仿真结果表明:该诊断系统能够准确地对发动机在稳态和动态工况以及蜕化状态下的执行机构及其传感器单一故障进行准确诊断和定位,具有很好的实时性. 相似文献
17.
18.