首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on three physical processes basic to energetic particle phenomena: (1) the acceleration of particles in tenuous plasmas; (2) the propagation of energetic charged particles in a disordered magnetic field, and (3) the interaction of energetic charged particles with tenuous plasmas to produce electromagnetic radiation. Because these electrons are frequently accelerated and emitted by the Sun, mostly in small and relatively simple flares, it is possible to define a detailed physical picture of these processes.In many small solar flares non-relativistic electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. Non-relativistic electrons exhibit a wide variety of propagation modes in the interplanetary medium, ranging from diffusive to essentially scatter-free. This variability in the propagation may be explained in terms of the distribution of interplanetary magnetic field fluctuations. Type III solar radio burst emission is generated by these electrons as they travel out to 1 AU and beyond. Recent in situ observations of these electrons at 1 AU, accompanied by simultaneous observations of the low frequency radio emission generated by them at 1 AU provide quantitative information on the plasma processes involved in the generation of type III bursts.  相似文献   

2.
A solar flare is a violent and transient release of energy in the corona of the Sun, associated with the reconfiguration of the coronal magnetic field. The major mystery of solar flare physics is the precise nature of the conversion of stored magnetic energy into the copious accelerated particles that are observed indirectly by the radiation that they produce, and also directly with in situ detectors. This presents a major challenge for theory and modeling. Recent years have brought significant observational advances in the study of solar flares, addressing the storage and release of magnetic energy, and the acceleration and propagation of fast electrons and ions. This paper concentrates on two topics relevant to the early phase of a flare, magnetic reconnection and charged particle acceleration and transport. Some recent pertinent observations are reviewed and pointers given for the directions that, this reviewer suggests, computational models should now seek to take.  相似文献   

3.
Ground Level Enhancement (GLE) events represent the most energetic class of solar energetic particle (SEP) events, requiring acceleration processes to boost ?1?GeV ions in order to produce showers of secondary particles in the Earth’s atmosphere with sufficient intensity to be detected by ground-level neutron monitors, above the background of cosmic rays. Although the association of GLE events with both solar flares and coronal mass ejections (CMEs) is undisputed, the question arises about the location of the responsible acceleration site: coronal flare reconnection sites, coronal CME shocks, or interplanetary shocks? To investigate the first possibility we explore the timing of GLE events with respect to hard X-ray production in solar flares, considering the height and magnetic topology of flares, the role of extended acceleration, and particle trapping. We find that 50% (6 out of 12) of recent (non-occulted) GLE events are accelerated during the impulsive flare phase, while the remaining half are accelerated significantly later. It appears that the prompt GLE component, which is observed in virtually all GLE events according to a recent study by Vashenyuk et al. (Astrophys. Space Sci. Trans. 7(4):459–463, 2011), is consistent with a flare origin in the lower corona, while the delayed gradual GLE component can be produced by both, either by extended acceleration and/or trapping in flare sites, or by particles accelerated in coronal and interplanetary shocks.  相似文献   

4.
Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth’s discrete aurora not only visualizes the inclination of the Earth’s magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas – field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration – the localized crustal magnetizations at Mars (Acuña et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA’s Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth – characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The “inverted V” energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars – the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars.  相似文献   

5.
Many physical phenomena in space involve energy dissipation which generally leads to charged particle acceleration, often up to very high energies. In the Earth magnetosphere energy accumulation and release occur in the magnetotail, namely in its Current Sheet (CS). The kinetic analysis of non-adiabatic ion trajectories in the CS region with finite but positive normal component of the magnetic field demonstrated that this region is essentially non-uniform in terms of scattering characteristics of ion orbits and contains spatially localized, well-separated sites of enhanced and reduced chaotization. The latter represent sources from which accelerated and energy-collimated ions are ejected into Plasma Sheet Boundary Layer (PSBL) and stream towards the Earth. Numerical simulations performed as part of a Large-Scale Kinetic Model have shown the multiplet ion structure of the PSBL is formed by a set of ion beams (beamlets) localized both in physical and velocity space. This structure of the PSBL is quite different from the one produced by CS acceleration near a magnetic reconnection region in which more energetic ion beams are generated with a broad range of parallel velocities. Multi-point Cluster observations in the magnetotail PSBL not only showed that non-adiabatic ion acceleration occurs on closed magnetic field lines with at least two CS sources operating simultaneously, but also allowed an estimation of their spatial and temporal characteristics. In this paper we discuss and compare the PSBL manifestations of both mechanisms of CS particle acceleration: one based on the peculiar properties of non-adiabatic ion trajectories which operates on closed magnetic field lines and the other representing the well-explored mechanism of particle acceleration during the course of magnetic reconnection. We show that these two mechanisms supplement each other and the first operates mostly during quiescent magnetotail periods.  相似文献   

6.
We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.  相似文献   

7.
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a “standard flare model” is ill-conceived when the entire distribution of flare energies is considered.  相似文献   

8.
Energetic particle instrumentation on the Polar satellite has discovered that significant fluxes of energetic particles are continuously present in the region of the dayside magnetosphere where they cannot be stably trapped. This region is associated with either open magnetic field lines or a magnetic topology associated with pseudo-trapping. Two distinct features [Time-Energy Dispersion (TED) signatures and Cusp Energetic Particle (CEP) events] are observed in these energetic particle fluxes that strongly suggest a local acceleration of mostly shocked solar wind particles. As the solar wind particles ram themselves into the cusp geometry, they form diamagnetic cavities with strong turbulence that are capable of accelerating particles to energies of 100s and 1000s of kiloelectronvolts. This process forms a layer of energetic particles on the magnetopause as well as permits such particles to enter via drift the equatorial nightside magnetosphere to distances as close as six Earth radii under the influence of gradient and curvature effects in the local magnetic field. The fluxes of these particles have all of the properties associated with the ring current and can supply the magnitude of the cross tail current required. ISEE-1 energetic particle data and their pitch angle distributions [PAD] are examined at the magnetic equatorial plane on the night side to investigate and possibly validate the insights gains from the Polar data and energetic particle trajectory tracing in a realistic magnetic field. The existence and properties of butterfly-type PADs strongly supports the concept of a dayside high latitude source of energetic particle fluxes. Because the CEP process is impulsive and time variable the charge separation produced by the drifting electrons (eastward) and ions (westward) on the magnetospheric nightside may be responsible for the cross tail electric field that has been ascribed to the reconnection/convection process.  相似文献   

9.
Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.  相似文献   

10.
R. P. Lin 《Space Science Reviews》2006,124(1-4):233-248
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies, but it appears that a different acceleration process, one associated with fast Coronal Mass Ejections (CMEs) is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. The observations of the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun strongly imply that the acceleration is closely related to the magnetic reconnection that releases the energy in solar flares. Here preliminary comparisons of the RHESSI observations with observations of both energetic electrons and ions near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

11.
We discuss here the energy deposition of solar FUV, EUV and X-ray photons, energetic auroral particles, and pickup ions. Photons and the photoelectrons that they produce may interact with thermospheric neutral species producing dissociation, ionization, excitation, and heating. The interaction of X-rays or keV electrons with atmospheric neutrals may produce core-ionized species, which may decay by the production of characteristic X-rays or Auger electrons. Energetic particles may precipitate into the atmosphere, and their collisions with atmospheric particles also produce ionization, excitation, and heating, and auroral emissions. Auroral energetic particles, like photoelectrons, interact with the atmospheric species through discrete collisions that produce ionization, excitation, and heating of the ambient electron population. Auroral particles are, however, not restricted to the sunlit regions. They originate outside the atmosphere and are more energetic than photoelectrons, especially at magnetized planets. The spectroscopic analysis of auroral emissions is discussed here, along with its relevance to precipitating particle diagnostics. Atmospheres can also be modified by the energy deposited by the incident pickup ions with energies of eV’s to MeV’s; these particles may be of solar wind origin, or from a magnetospheric plasma. When the modeling of the energy deposition of the plasma is calculated, the subsequent modeling of the atmospheric processes, such as chemistry, emission, and the fate of hot recoil particles produced is roughly independent of the exciting radiation. However, calculating the spatial distribution of the energy deposition versus depth into the atmosphere produced by an incident plasma is much more complex than is the calculation of the solar excitation profile. Here, the nature of the energy deposition processes by the incident plasma are described as is the fate of the hot recoil particles produced by exothermic chemistry and by knock-on collisions by the incident ions.  相似文献   

12.
I review the observations of galactic synchrotron sources, focusing on shell supernova remnants (SNRs), with particular attention to attributes that constrain the properties of electron acceleration. Radio observations provide information on source fluxes, spectral index, morphology, and polarization. Recent observations give us strong reason to believe that several young SNRs show synchrotron X-ray emission. Even if X-rays are thermal, however, limits can be set on the maximum energy to which electrons can be accelerated without a spectral break, since no galactic SNR is observed to have X-ray emission (due to any source) as bright as the extrapolation from radio frequencies of radio synchrotron emission. If synchrotron X-rays are detected or inferred, their morphology and spectrum provide important information on mechanisms governing acceleration to the highest energies. I describe models of synchrotron emission from SNRs and their comparison with observations. Finally, I describe the tasks ahead for both observers and theoreticians, to make better use of what SNR synchrotron emission tells us about particle acceleration.  相似文献   

13.
The heliosphere is bathed in the supersonic solar wind, which generally creates shocks at any obstacles it encounters: magnetic structures such as coronal mass ejections and planetary magnetospheres, or fast-slow stream interactions such as corotating interaction regions (CIRs) or the termination shock. Each of these shock structures has an associated energetic particle population whose spectra and composition contain clues to the acceleration process and the sources of the particles. Over the past several years, the solar wind composition has been systematically studied, and the long-standing gap between high energy (>1 MeV amu–1) and the plasma ion populations has been closed by instruments capable of measuring the suprathermal ion composition. In CIRs, where it has been possible to observe all the relevant populations, it turns out that the suprathermal ion population near 1.8–2.5 times the solar wind speed is the seed population that gets accelerated, not the bulk particles near the solar wind peak. These new results are of interest to the problem of Galactic Cosmic-Ray (GCR) Acceleration, since the injection and acceleration of GCRs to modest energies is likely to share many features with processes we can observe in detail in the heliosphere.  相似文献   

14.
We propose a new phase-mixing sweep model of coronal heating and solar wind acceleration based on dissipative properties of kinetic Alfvén waves (KAWs). The energy reservoir is provided by the intermittent ∼1 Hz MHD Alfvén waves excited at the coronal base by magnetic restructuring. These waves propagate upward along open magnetic field lines, phase-mix, and gradually develop short wavelengths across the magnetic field. Eventually, at 1.5–4 solar radii they are transformed into KAWs. We analyze several basic mechanisms for anisotropic energization of plasma species by KAWs and find them compatible with observations. In particular, UVCS (onboard SOHO) observations of intense cross-field ion energization at 1.5–4 solar radii can be naturally explained by non-adiabatic ion acceleration in the vicinity of demagnetizing KAW phases. The ion cyclotron motion is destroyed there by electric and magnetic fields of KAWs.  相似文献   

15.
The STEREO Mission: An Introduction   总被引:4,自引:0,他引:4  
The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle. After a series of highly eccentric Earth orbits with apogees beyond the moon, each spacecraft used close flybys of the moon to escape into orbits about the Sun near 1 AU. Once in heliospheric orbit, one spacecraft trails Earth while the other leads. As viewed from the Sun, the two spacecraft separate at approximately 44 to 45 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the inner heliosphere to Earth. Researchers will use STEREO measurements to study the mechanisms and sites of energetic particle acceleration and to develop three-dimensional (3-D) time-dependent models of the magnetic topology, temperature, density and velocity of the solar wind between the Sun and Earth. To accomplish these goals, each STEREO spacecraft is equipped with an almost identical set of optical, radio and in situ particles and fields instruments provided by U.S. and European investigators. The SECCHI suite of instruments includes two white light coronagraphs, an extreme ultraviolet imager and two heliospheric white light imagers which track CMEs out to 1 AU. The IMPACT suite of instruments measures in situ solar wind electrons, energetic electrons, protons and heavier ions. IMPACT also includes a magnetometer to measure the in situ magnetic field strength and direction. The PLASTIC instrument measures the composition of heavy ions in the ambient plasma as well as protons and alpha particles. The S/WAVES instrument uses radio waves to track the location of CME-driven shocks and the 3-D topology of open field lines along which flow particles produced by solar flares. Each of the four instrument packages produce a small real-time stream of selected data for purposes of predicting space weather events at Earth. NOAA forecasters at the Space Environment Center and others will use these data in their space weather forecasting and their resultant products will be widely used throughout the world. In addition to the four instrument teams, there is substantial participation by modeling and theory oriented teams. All STEREO data are freely available through individual Web sites at the four Principal Investigator institutions as well as at the STEREO Science Center located at NASA Goddard Space Flight Center.  相似文献   

16.
The acceleration of charged particles in the magnetic current sheets downstream from magnetic neutral lines is discussed and related to the plasma populations expected to be formed in a simple open model magnetosphere. A simple model of plasma acceleration in the dayside current sheet is set up, and it is shown that magnetospheric particles may take up a considerable fraction of the electromagnetic energy dissipated in the sheet even though they may represent only a small fraction of the total particle influx. The process should result in energetic ring current and ionospheric particles being found in boundary layers on either side of the magnetopause, and accelerated ionospheric particles in the plasma mantle. Acceleration of magnetosheath plasma in the dayside current sheet should result in enhanced flow speeds in these boundary layers, but the process may amount to little more than a return to the sheath plasma of energy previously extracted from it during its inflow on the dayside and stored in the compressed sheath field, due to the appreciable energy take-up from the current sheet by magnetospheric particles. The energy separation between ionospheric plasma and magnetosheath plasma on cusp field lines is shown to result in a spatial separation of polar wind and plasma mantle populations in the tail, the polar wind ions usually reaching out to only a few tens of R E down-tail such that they usually remain on closed field lines, forming a wedge-shaped region within the mantle shadow-zone. Polar wind ions are then convected back towards the Earth and thus their major sink is via the dayside current sheet rather than outflow into the tail. The major source for the plasmasheet depends upon the location of the neutral line, but mantle ions may usually be dominant. However, with a near-Earth neutral line during disturbed periods ionospheric plasma will be the sole ring-current source. Under usual conditions with a more distant neutral line the spatial separation of the two plasma sources in the tail may result in an energy separation in the inner ring current, with ionospheric particles dominant up to 2 to 20 keV and mantle ions dominant at higher energies. Formation of the plasmasheet is discussed, and it is shown that a layer of ions unidirectionally streaming towards the Earth should be formed on its outer boundary, due to current sheet acceleration of lobe particles and inward convection of the field lines. A similar process leads to earthward flows on the inner layer of the dayside cusp. Finally, the region tailward of the nightside neutral line is discussed and it is shown that a thin tailward flowing two-stream plasma band should be formed across the centre plane of the tail. The slow-speed stream corresponds to incoming lobe ions, the faster stream to the current sheet accelerated ions.  相似文献   

17.
R. P. Lin 《Space Science Reviews》2011,159(1-4):421-445
RHESSI measurements relevant to the fundamental processes of energy release and particle acceleration in flares are summarized. RHESSI??s precise measurements of hard X-ray continuum spectra enable model-independent deconvolution to obtain the parent electron spectrum. Taking into account the effects of albedo, these show that the low energy cut-off to the electron power-law spectrum is typically ?tens of keV, confirming that the accelerated electrons contain a large fraction of the energy released in flares. RHESSI has detected a high coronal hard X-ray source that is filled with accelerated electrons whose energy density is comparable to the magnetic-field energy density. This suggests an efficient conversion of energy, previously stored in the magnetic field, into the bulk acceleration of electrons. A new, collisionless (Hall) magnetic reconnection process has been identified through theory and simulations, and directly observed in space and in the laboratory; it should occur in the solar corona as well, with a reconnection rate fast enough for the energy release in flares. The reconnection process could result in the formation of multiple elongated magnetic islands, that then collapse to bulk-accelerate the electrons, rapidly enough to produce the observed hard X-ray emissions. RHESSI??s pioneering ??-ray line imaging of energetic ions, revealing footpoints straddling a flare loop arcade, has provided strong evidence that ion acceleration is also related to magnetic reconnection. Flare particle acceleration is shown to have a close relationship to impulsive Solar Energetic Particle (SEP) events observed in the interplanetary medium, and also to both fast coronal mass ejections and gradual SEP events. New instrumentation to provide the high sensitivity and wide dynamic range hard X-ray and ??-ray measurements, plus energetic neutral atom (ENA) imaging of SEPs above ??2 R??, will enable the next great leap forward in understanding particle acceleration and energy release is large solar eruptions??solar flares and associated fast coronal mass ejections (CMEs).  相似文献   

18.
The Two Sources of Solar Energetic Particles   总被引:2,自引:0,他引:2  
Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to “impulsive” SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of (Z>50)/O. Alternatively, in “gradual” SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ~2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the “reservoir”, a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing “magnetic bottle” expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow outward diffusion of the particles. At times the reservoir from one event can contribute its abundances and even its spectra as a seed population for acceleration by a second CME-driven shock wave. Confinement of particles to magnetic flux tubes that thread their source early in events is balanced at late times by slow velocity-dependent migration through a tangled network produced by field-line random walk that is probed by SEPs from both impulsive and gradual events and even by anomalous cosmic rays from the outer heliosphere. As a practical consequence, high-energy protons from gradual SEP events can be a significant radiation hazard to astronauts and equipment in space and to the passengers of high-altitude aircraft flying polar routes.  相似文献   

19.
Whereas the entry mechanism of energetic solar particles into the open field line region of the magnetosphere is now a rather well understood process, transport processes of solar particles in the closed field line region are still unclear and under dispute. The main difficulty lies not only in the fact that different field models predict different behavior of the particles in the quasi-trapping region (e.g. cut-off latitude), but that dynamic changes of the magnetosphere as geomagnetic storms and substorms greatly influence the particle distribution. The present review tries to summarize the status of knowledge regarding solar proton behavior on closed magnetospheric field lines. Together with a presentation of recent measurements in the closed field line region relevant theoretical problems are discussed. They fall either under the study of single particle motion in different static magnetospheric configurations (due to different field models or due to real, e.g. ring current induced changes), or under the study of resonant interaction processes as pitch angle scattering and radial diffusion.Invited Lecture, Second Meeting of the European Geophysical Society, September 1974, Trieste, Italy.  相似文献   

20.
Computer modeling of test particle acceleration at oblique shocks   总被引:1,自引:0,他引:1  
We review the basic techniques and results of numerical codes used to model the acceleration of charged particles at oblique, fast-mode, collisionless shocks. The emphasis is upon models in which accelerated particles (ions) are treated as test particles, and particle dynamics is calculated by numerically integrating along exact phase-space orbits. We first review the case where ions are sufficiently energetic so that the shock can be approximated by a planar discontinuity, and where the electromagnetic fields on both sides of the shock are defined at the outset of each computer run. When the fields are uniform and static, particles are accelerated by the scatter-free drift acceleration process at a single shock encounter. We review the characteristics of scatter-free drift acceleration by considering how an incident particle distribution is modified by interacting with a shock. Next we discuss drift acceleration when magnetic fluctuations are introduced on both sides of the shock, and compare these results with those obtained under scatter-free conditions. We describe the modeling of multiple shock encounters, discuss specific applications, and compare the model predictions with theory. Finally, we review some recent numerical simulations that illustrate the importance of shock structure to both the ion injection process and to the acceleration of ions to high energies at quasi-perpendicular shocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号