首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
旋转光滑直通道湍流流动一维热线实验   总被引:1,自引:1,他引:0  
采用一维热线详细测量了不同雷诺数下及较高旋转数条件下旋转光滑直通道内湍流边界层及主流的速度型,在此基础上构建适用旋转数范围更广的旋转通道对数律的修正公式,分析了旋转效应对壁面摩擦速度的影响。实验过程中雷诺数范围是15000~25000,旋转数范围是0~0.444。通道壁面为室温,流体与壁面之间无热交换。结果表明:旋转对于通道截面速度型影响很大;旋转导致速度型整体向后缘面偏转,但最高速度出现在靠近前缘面的区域;后缘面无量纲平均速度型分布顺序与旋转数排列次序相一致,在对数律区符合对数律规律。壁面剪切应力在前缘面随着旋转数的增大而先单调递减,而在后缘面的变化趋势与此相反。旋转状态下修正的对数律公式斜率随着旋转数的增加而单调递减且在后缘面递减的趋势逐步有所减缓,并提出了对数律区的旋转修正公式,公式的误差范围控制在15%以内。   相似文献   

2.
为研究截面形状和旋转效应对高压涡轮动叶内部冷却通道换热的影响,对雷诺数为10000~50000,旋转数为0~209,通道转角为0°、225°、45°的带直肋双流程梯形截面通道换热特性进行了实验研究。结果表明:静止状态下,在第一通道,梯形通道后缘换热强于前缘;在第二通道,前、后缘换热区别不大,后缘的换热略强于前缘。旋转状态下,对0°通道转角,随旋转数的增大,第一通道的后缘面换热仍强于前缘面和外侧面,且差异更明显;第二通道前缘换热相对后缘增强。在较高旋转数(旋转数大于1)时,0°通道转角工况的换热最强,45°转角最弱。   相似文献   

3.
高旋转数下带肋回转通道的换热特性   总被引:1,自引:1,他引:0  
为匹配真实发动机转子叶片的工作条件,将实验回转通道气体压力提高到500kPa以上,使雷诺数和旋转数范围分别扩展到10000~70000和0~2.08.在此基础上通过实验方法研究了高旋转数下带45°倾角斜肋的方形截面回转通道的换热特性.结果表明:回转通道的第1通道前缘面传热系数随旋转数的增大先减小,在达到临界旋转数后换热随旋转数增大而增强;低旋转数下,回转通道的第2通道前后缘面换热差异较小,随着旋转数的增大,前缘面换热始终强于后缘面,这种换热特性与光滑通道完全不同.   相似文献   

4.
旋转光滑直通道湍流流动二维热线实验   总被引:3,自引:3,他引:0       下载免费PDF全文
采用二维热线测量了旋转光滑直通道内不同流向位置上的平均速度和雷诺应力。实验结果表明:较高的当地旋转参数使得旋转对平均速度的影响区域扩大并且导致了前缘面附近湍流流动的再层流化。后缘面附近无量纲主流平均速度型严格按照旋转数顺序依次排列,且在对数律区呈现对数律分布。与此同时,所有无量纲雷诺应力分量在后缘面附近基本不受旋转影响。再层流化导致了前缘面附近无量纲主流平均速度型无法在对数律区维持对数律分布,且所有雷诺应力分量都随着旋转数和流向位置半径增大不断衰减;经过u-v象限分析,再层流化现象的直接原因被归于湍流脉动生成减少。   相似文献   

5.
杨珂  闻洁  徐国强 《航空动力学报》2016,31(11):2567-2574
应用k-ω SST(shear stress transport)湍流模型,计算分析旋转U型通道在不同进口雷诺数(10000~60000)和高旋转数(0~2.013)范围内的流动与换热特性.结果表明:在静止和旋转状态下,进口雷诺数越大,努塞尔数越大.相比于同一工况下的静止状态,旋转显著增强了径向外流直通道的换热强度,径向内流直通道换热强度增大不明显.旋转数对U型通道换热的影响主要通过改变哥氏力和浮升力的大小.受哥氏力的影响,径向外流直通道后缘面换热增强,前缘面换热减弱.浮升力诱发了近壁面的流动分离,使得径向外流直通道前缘面不同位置处的换热强度随旋转数的增加而先减小后增大,计算得到的临界旋转数变化规律与实验测量结果保持一致,即无量纲距离参数与临界旋转数的乘积为定值.   相似文献   

6.
温度比对旋转直肋双通道换热特性的影响研究   总被引:1,自引:1,他引:0       下载免费PDF全文
崔欣超  邓宏武  李洋  田淑青 《推进技术》2016,37(11):2009-2016
为了研究旋转涡轮叶片内部冷却通道的换热特性,将叶片内冷通道简化为带90°直肋的旋转双流程方通道,通过旋转加热实验的方式研究了温度比对旋转直肋双通道换热特性的影响。实验进口雷诺数范围为1×104~5×104,旋转数范围为0~2.02,实验平均温度比分别为0.11,0.16,0.20。研究结果表明,与光滑通道实验数据相比,90°直肋削弱了旋转对换热的影响,同时破坏第二通道后缘面附近的不稳定二次流,造成后缘面换热弱于前缘面;温度比是通过改变冷却空气物性与通道内浮升力对旋转通道换内热特性产生影响,温度比的提高引起的物性变化对通道换热具有削弱作用,静止情况下温度比0.20对应的换热与温度比0.11相比,被削弱程度可达16%,而浮升力对换热具有增强作用;低旋转数下,由温度比引起的浮升力作用与物性作用相互中和,高旋转数下温度比的增大对通道换热特性的增强作用更加明显,并且第二通道换热特性受温度比变化影响较第一通道小。  相似文献   

7.
杨珂  闻洁 《推进技术》2016,37(9):1696-1702
为研究浮升力对高旋转数(0~2.013)U型通道流动与换热的影响,采用k-ωSST两方程模型对其展开数值研究。分别对相同旋转数,不同温比(0.12,0.17和0.22)和相同温比(0.22),不同旋转数条件下的U型通道进行研究。结果表明:在径向外流直通道中,浮升力诱发通道前缘面发生流动分离,前缘面的换热能力随旋转数的增大先减小而后增大;在径向内流直通道中,受浮升力影响流体呈双峰流型。随旋转数增大,前后缘面间Nu/Nus的差别减小,当旋转数增大到1.0左右时,后缘面的Nu/Nus的值超越前缘面。在静止通道内,温比越小换热能力越强;旋转通道与之相反。计算结果验证了浮力数在评价壁面换热能力的变化时,综合考虑了旋转数和温比对壁面换热的影响。  相似文献   

8.
旋转光滑及带肋U形通道的局部换热特性   总被引:4,自引:0,他引:4  
用实验方法研究了旋转状态下光滑及带肋U形方截面通道的换热特性。带肋通道中,90°直肋对称布置在前后缘,肋片高径比为0.143,节距比为7。在实验雷诺数及旋转数范围分别为6100~25100和0~0.26下,对比分析了光滑及带肋通道的旋转换热特性。结果表明,带肋通道的换热明显好于光滑通道;旋转强化了第1通道后缘及第2通道前缘的换热,但削弱了第1通道前缘及第2通道后缘的换热;旋转效应对带肋结构的第1通道前后缘换热的影响最为明显;光滑通道中,弯道效应对其下游换热的影响较为显著。  相似文献   

9.
在雷诺数为25000、旋转数为0.24、密度比为0.07~0.22的范围内,以数值计算的方法模拟了旋转方通道内三维流场及换热分布,与公开文献中的换热实验结果进行的对比表明,低雷诺数k-ω模型的计算结果与实验值吻合得相对较好;重点研究了旋转状态下冷气密度比对通道内流场和换热的影响,分析了哥氏力和浮升力在通道中的交互作用机理,结果表明,哥氏力引发的截面二次流是造成旋转通道前后缘换热差异的主要因素,浮升力加剧了通道内主流型的偏移,同时,其在前缘表面诱发的流体分离改变了局部湍流强度和换热分布。  相似文献   

10.
针对涡轮转子叶片内冷技术,使用TR-PIV(time resolved particle image velocimetry)技术与热线技术同步原位测量了壁面加热条件下旋转通道内边界层速度场和温度场特性。结果显示:旋转数大于0.48时前缘面附近出现了回流现象,并从受力分析的角度给出了解释;回流区一般出现于流场下游、较大密度比、较高旋转数下,可以利用回流区的影响达到增强前缘面换热的目的;得到了旋转条件下无量纲温度型、温度脉动量和努塞尔数的变化规律,可以看出湍流边界层内部的温度场分布在旋转效应的影响下产生了强烈的不对称性,与静止条件下的标准规律相比会产生一定的偏差。  相似文献   

11.
采用高频粒子图像测速系统(TR-PIV)测量了旋转带肋通道内的主流平均速度、雷诺切应力、再附点等参数,并研究其沿程变化规律,通道高宽比为1,肋的阻塞比为01,雷诺数为10 000,旋转数从0变化到052,实验结果表明:静止时流动呈对称分布,但旋转后产生的哥氏力会极大地影响通道内的湍流流动,随着转速的增加,主流速度型偏向后缘面,前缘面涡系结构不断增大,再附点不断后移,而后缘面正好相反,并且这种趋势会沿程发展;前缘面附近的雷诺切应力变得越来越弱,而后缘面则越来越强,沿程雷诺切应力极值基本不变,但下游区域有所扩大。   相似文献   

12.
The turbulent fluctuation and the rotation correction of wall function law are investigated in the entrance section of a rotating channel. The one-dimensional hot wire probe and the X-type probe are utilized to measure the boundary layer at four streamwise stations. Through the analysis on the boundary layer near the leading side and trailing side, it is found that the turbulent fluctuation is promoted in the trailing side whereas suppressed in the leading side. This difference is attributed to the Coriolis instability near the trailing side. In addition, considering the local rotation parameter Rc, whose maximum absolute value is 0.014, is larger than that in previous research, whose maximum value is 0.007, the whole process of the relaminarization is captured. To understand this phenomenon better, the effects of the generation term and the Coriolis term in the transport equation of the Reynolds stress are discussed. In addition, the rotation correction of the viscous-Coriolis region and the Coriolis region are discussed, a new revising method for the wall function is proposed.  相似文献   

13.
The developing secondary flow fields in the entrance section of a rotating straight channel were experimentally investigated using Particle Image Velocimetry (PIV). The effects of streamwise position, Reynolds number and rotation number on the development of the secondary flow fields were revealed. The results show that the absolute values of vorticity flux of the trailing side roll cells increase with increasing radius of the measured plane and rotation number. When the absolute value of vorticity flux exceeds a critical value, the merging of the trailing side roll cells appears. Moreover, when the number of the trailing side vortex pairs is even, the absolute values of vorticity flux of the leading side vortices increase along streamwise direction. Otherwise, the absolute values decrease along the streamwise direction. By the circulation analysis, this phenomenon was found to have relationship with the merging of the trailing side roll cells, and further concluded that the secondary flow field in a rotating channel has to be treated as a whole. At last, the increase of the Reynolds number was found to be able to induce the merging position moves upstream.  相似文献   

14.
基于代数雷诺应力方程的简化模型,并结合充分发展旋转通道的直接数值模拟(DNS)湍流脉动数据,发展了一种适用于旋转通道的各向异性k ω模型。采用该模型对进口雷诺数为6000,旋转数为0~0.26的旋转直通道进行模拟,结果表明:将旋转修正系数乘以传统的湍流黏度发展的各向异性k ω模型,能够准确地描述旋转状态下前缘面和后缘面的换热情况,是一种有效的各向异性湍流模型修正方法;旋转修正系数是否合理的关键是对雷诺应力比值进行准确地描述;通道的换热效果与旋转数和流向沿程无量纲位置有关,前缘面的换热随旋转数和无量纲流向距离的增加而减小,而后缘面的换热随旋转数和无量纲流向距离的增加而增大。   相似文献   

15.
旋转槽道湍流的格子Boltzmann方法模拟   总被引:1,自引:1,他引:0  
吴宏  王蛟 《航空动力学报》2011,26(9):1928-1934
基于多松弛格子Boltzmann方法的大涡模拟对雷诺数为194,旋转数从0~5.0的旋转槽道湍流进行数值模拟.采用动态亚格子应力模型模化滤波后的不封闭项,修正二阶矩作用力模型计算压力梯度、哥氏力.对平均速度、均方根脉动速度、雷诺应力以及湍流结构进行了计算.结果显示哥氏力使流场平均速度呈现不对称性:在压力面,随着旋转数的增加,湍流度增强;而在吸力面湍流脉动减弱,具有层流化的趋势.将格子Boltzmann模型与直接数值模拟求解进行对比,结果验证了格子Boltzmann方法在旋转湍流模拟中的可行性.   相似文献   

16.
The heat transfer in a novel smooth wedge-shaped cooling channel with lateral ejection of turbine blade trailing edge is experimentally investigated in both non-rotating and rotating cases. Beside the conventional inlet at the bottom of the channel, an extra coolant injection from 8 lateral non-equant holes is introduced to improve the overall heat transfer. The total mass flow rate ratio (lateral mass flow rate/total mass flow rate) varies from 0 to 1.0. The major inlet Reynolds number and rotation number respectively vary from 10000 to 20000 and from 0 to 1.16. Experimental results show that the lateral inlet decreases local bulk temperature and increases local heat transfer at the middle and the top of the static channel. In rotating cases, the lateral inlet notably improves the heat transfer at the high-radius half channel and compensates the negative effects induced by the rotation. Both intensity and uniformity of heat transfer inside the channel are enhanced while flow resistance decreases with proper mass flow rate ratio of coolant from two inlets. The most satisfactory total mass flow rate ratio is around 2/3. This new structural style of cooling channel has huge potential and provides new direction of heat transfer of turbine blade trailing edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号