首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对超大功率霍尔推力器放电参数特性评估,开展放电电压和流量等参数变化对性能影响的仿真及试验研究,以确定推力器设计最优匹配的放电电压及放电电流工况。建立了Particle-in-Cell(PIC)数值仿真模型,并搭建了HET-450大功率霍尔推力器试验平台;针对变放电电压、变流量下推力器放电特性,仿真计算给出了放电通道内原子密度、电势以及电子温度等分布,探究了推力器电离和加速运行机理,进一步,结合试验,开展了放电电流、推力等比对分析。结果表明:放电电压从300V增加至500V过程中,电离效率逐渐提升,因而放电电流、推力以及阳极效率均递增,而继续增加放电电压则会导致过热场的产生,离子与壁面作用增强导致电离出的离子再次复合,工质利用率下降的同时壁面损失增加,宏观表现为阳极效率的下降。此外,仿真与试验所获得放电电流、推力等结果符合良好,说明建模合适;在500V,80mg/s条件下,推力达2.1N、阳极效率60%,达到设计要求,表明设计合理有效。  相似文献   

2.
以研究氪气替代氙气作为霍尔推力器工质时,等离子体束发散程度大等束聚焦特性问题为目的,通过以霍尔推力器磁场参数、放电电压和阳极工质流量分别作为单一变量进行实验研究,考察其对推力器等离子体束聚焦影响情况。使用HET-P70霍尔推力器进行相关实验,通过改变磁场参数来研究磁场位形对氪气工质推力器性能的影响,最终发现合适磁场位形形成的磁聚焦状态,即实验一中的工况3,可以使羽流发散角达到11.5°,此时推力器放电电压在400V,阳极工质流量3mg/s。另外,通过实验二和实验三,考察阳极工质流量和放电电压对氪等离子体束聚焦的影响机理,发现两个放电参数的变化主要改变了中性气体主电离区位置,进而影响等离子体束聚焦状态。电离位置在设定工况下外移9%,会使得羽流发散半角增大约12°。所以,磁场位形和中性气体的电离位置是影响氪等离子体束聚焦的重要因素,在对氪气霍尔推力器进行设计优化时应予重点考虑。  相似文献   

3.
韩轲  汪颖  鲁海峰 《推进技术》2020,41(6):1434-1440
基于霍尔推力器一维准中性流体模型,对放电壁面侵蚀对低频振荡特性的影响进行了数值模拟研究。通过改变霍尔推力器放电通道的横截面积,研究了霍尔推力器寿命期内通道受离子溅射后,放电电流振荡特性变化。研究结果显示,横截面积从25cm2增大到37cm2时,放电电流振荡幅值增加,振荡频率基本不变;继续增加横截面积,放电电流振荡幅值减小,振荡频率增加。理论分析表明:通道侵蚀面积增大,导致离子碰撞频率变化,进而引起振荡特性变化。  相似文献   

4.
为了验证LHT-100自励磁霍尔推力器工作状态的热特性和空间环境适应性,对霍尔推力器进行了工作状态热特性测试和热真空实验研究,给出了LHT-100霍尔推力器在工作状态下关键部位的温度升高和自然降温规律,分析了自励磁霍尔推力器在常温下启动达到热平衡过程中的推力、比冲、放电损耗等随时间的变化规律,并在带过渡板情况下开展了霍尔推力器的热真空环境实验。实验结果表明:LHT-100自励磁霍尔推力器在工作近3.5h内达到热平衡,关机5h后霍尔推力器整体温度自然降至室温,在常温下启动达到热平衡过程中霍尔推力器的放电电流、推力、比冲、放电损耗等指标在正常范围内,霍尔推力器在热真空环境中启动和工作正常,霍尔推力器零部件及其材料对高低温变化环境的稳定性和适应性较好,能够适应高低温变化的环境影响。  相似文献   

5.
圆柱形阳极层霍尔推力器内轮辐效应的实验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
《推进技术》2019,40(7):1676-1680
为了研究圆柱形阳极层霍尔推力器内关于电子反常输运的轮辐效应(Rotating Spoke),分别采用高速相机和静电探针来捕捉圆柱形阳极层霍尔推力器内的轮辐效应图像和等离子体震荡频率。结果表明:在放电电压350V,放电电流3.5A,阳极上表面处的磁场强度为125Gs,工作气压为2×10-2Pa时,由测得轮辐效应的放电图像和波形可知,轮辐效应的频率为10kHz~12.5kHz。当磁场强度增加到205Gs,放电电流增加到4A时,轮辐效应的频率增加到25kHz,并且轮辐效应出现分裂和合并现象。此研究结果表明,圆柱形阳极层霍尔推力器内不仅存在轮辐效应现象以及角向电场,而且不同的工作参数会有不同的轮辐效应模式和频率。  相似文献   

6.
霍尔推力器阳极加热机制及设计优化   总被引:1,自引:1,他引:0       下载免费PDF全文
张旭  魏鑫  刘敏  吕红剑  于达仁 《推进技术》2019,40(3):699-706
阳极的过热不仅降低霍尔推力器的放电稳定性和推力效率,同时也是推力器的一种失效原因,直接引起推力器放电电流、功率异常增加导致关机故障。为在设计阶段解决阳极过热失效问题,本文通过理论分析建立了阳极热过程模型,分析得到阳极鞘层的形成是影响阳极热功率的核心过程,而阳极电流密度和磁感应强度是影响鞘层特性的关键参数。研究结果表明,阳极鞘层电势差随阳极电流密度的提高而增大,在典型近阳极区等离子体参数下,阳极电流密度小于600A/m2时,阳极负鞘层形成;而阳极热功率随着近阳极区磁感应强度的增加而升高,将阳极位置设计在零磁场区是最有利于降低阳极热功率的设计。  相似文献   

7.
为了准确掌握不同工况下混合励磁模式低功率霍尔推力器束流发散和推力矢量偏心特性,凭借自主设计和改进的一套快速评估霍尔推力器束流发散角和推力矢量偏角原位集成诊断装置,系统研究了推力器在不同阳极质量流率、磁场、电场下束流分布和推力矢量偏心特性的变化规律。结果表明,束流发散角随阳极质量流率(0.65mg/s~0.95mg/s)和磁场强度(112Gs~142Gs)的变化呈现负相关的特性。当阳极质量流率0.95mg/s,束流发散角降到29.1°(<30°)。推力矢量偏角随阳极质量流率和磁场强度的变化分别存在极大值(1.19°)和极小值(0.91°)。束流发散角、推力矢量偏角在250V~330V放电电压范围内基本保持不变。  相似文献   

8.
为了提出降低阳极层霍尔推进器运行过程中的磁极刻蚀程度的方案,记录磁极刻蚀程度在相关参数影响下的变化,针对阳极层霍尔推进器的放电电流、电压、工质输送速率等工作参数开展实验研究,定量分析了这些影响因子对推进器磁极刻蚀程度的影响。通过测量磁极被溅射出的粒子在样品表面不同位置上的沉积速率,计算出了推进器在不同运行条件下,由于磁极刻蚀而产生的溅射粒子数量和密度。实验结果表明,该推进器在运行过程中,溅射粒子主要集中在羽流中心线附近区域;随着放电电压和电流的增加,溅射粒子的密度显著上升,并且在以羽流中心线为中心,半径为4cm的圆面区域内,溅射粒子密度上升明显;降低工质输送速率,在低气压、高电压和小电流的运行条件下能够有效降低推进器磁极刻蚀程度,实验所采用的霍尔推进器合适的工作气压为0.02~0.025Pa。  相似文献   

9.
本文从阳极层霍尔推力器的技术特点出发,分析了单级和双级阳极层霍尔推力器在结构和性能上的差异;梳理国内外阳极层霍尔推力器的研究现状,结合未来大载荷空间任务的动力需求指出阳极层霍尔推力器未来的发展趋势;最后,提出了阳极层霍尔推力器在研制中的主要技术问题,主要包括电离与加速独立控制、放电模式与模式跳变、推力器工作模式的多样化、高电压强磁场设计、小间隙高压绝缘问题、高电压热设计以及放电室溅射削蚀等,分析了技术难点并给出解决思路。  相似文献   

10.
磁场位形和通道尺度会改变霍尔推力器等离子体放电过程,影响推力器的宏观放电特性。为分析磁场和通道宽度对推力器放电性能的影响规律,本文针对霍尔推力器轴对称通道结构和放电物理过程建立2D3V物理模型,采用粒子模拟方法研究了霍尔推力器磁零点磁场位形不同通道宽度的电势、粒子数密度、电子温度、电离速率、比冲及推功比的变化规律,结果表明:在具有磁零点磁场位形下,随着通道宽度增加,通道出口处电势降增加,加速区缩短,离子径向速度减少,壁面腐蚀降低;当磁零点位置在内壁面,推力器通道宽度由14 mm增加到16 mm时,推力器比冲和推功比增大,推力器放电效率提高;当磁零点位置在通道中轴线或外壁面,且通道宽度大于14 mm时,推力器比冲增大,推功比减小,推力器效率下降。  相似文献   

11.
为了加深对激光支持的脉冲等离子体推力器工作过程的认识,本文对有无陶瓷隔离板和不同初始电压下的激光支持的脉冲等离子体推力器进行了实验研究。利用放电伏安特性对比了放电特性参数和性能参数,然后利用结合窄带滤光镜的高速摄影技术揭示了性能差异背后的物理过程变化。结果表明,陶瓷隔离板可以有效避免放电电弧对工质的烧蚀,这可以抑制滞后烧蚀的产生,从而提高推力器的推进性能。对激光烧蚀产生的工质的电离和加速是在多次振荡放电过程中进行,而不像理想电流片模型那样只电离和加速一次。放电通道内工质的电离和加速效果最为显著的时间为放电的第2个半周期。随着初始电压的增加,单位放电能量产生的推进性能先增加后趋于平稳,然后继续增加。单位放电能量产生的推进性能在初始电压高于2050V后得到较大的提高,通过放电等离子体图像推测,这意味着附着等离子体电弧的存在对推力器性能的提高有重要影响。  相似文献   

12.
磁场强度及位形对霍尔推力器放电过程有显著影响。根据霍尔推力器通道尺寸和等离子体放电过程建立二维物理模型,采用粒子模拟方法,研究了不同磁场强度及位形等离子体放电特性,讨论了推力、推功比及放电电流的变化规律。模拟表明:当中轴线磁场强度峰值小于200G时,磁场对电子轴向传导约束减弱;当磁场强度峰值在200G~420G时,电子温度、电离率及电子与壁面碰撞频率降低,出口处离子径向速度增大,壁面腐蚀增加;当磁场强度峰值为280G时,加速区最短,放电电流最小。不同零磁点磁场位形会改变通道电离区和加速区位置,影响推力器放电性能。  相似文献   

13.
空气等离子体射流点火器特性实验研究   总被引:5,自引:4,他引:1       下载免费PDF全文
为了研究等离子体射流点火提升燃烧室内可燃混合气点火性能的机理,利用建立的实验测量系统,实验研究空气等离子体射流点火器的放电特性和射流特性,并与电火花点火器对比研究在航空煤油/空气混合气中的点火过程。实验结果表明,该空气等离子体射流点火器的击穿电压为9.2k V;相同电压下,电弧电流随工作介质流量的增大而减小,随点火驱动电源输出电流的增大而增大;点火器的伏安特性为下降型;等离子体点火射流长度随点火驱动电源输出电流的增大而增长,随工作介质流量的增大,先增长后缩短;来流速度对等离子体点火射流产生较大影响;等离子体射流点火延迟时间小于电火花点火。  相似文献   

14.
无热子空心阴极冷启动特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了研究无热子空心阴极冷启动特性,测量了点火电压、供气流量、触持极与发射体间距等对空心阴极的点火及放电特性的影响。随着空心阴极点火电压从200~600V逐渐升高,阴极冷启动过程分成了未点着过程、过渡过程和稳定点着过程。稳定点着过程分成了击穿和自持两个阶段;在过渡过程中随着点火电压升高,冷启动时间逐渐缩短;在1~9sccm范围内逐步增大供气流量,无热子空心阴极冷启动点火电压逐渐下降;无热子空心阴极的放电特性与传统有热子空心阴极放电特性基本保持一致,同时随着触持极与发射体间距从2.3mm逐渐增大到4.3mm,放电特性也逐渐恶化。  相似文献   

15.
毛细管型脉冲等离子体推力器采用固态工质,电热加速机制,结构简单可靠,是一种具有应用价值的微纳卫星低功率电推进系统。本文建立电学和光学联合诊断系统,对毛细管脉冲等离子体推力器等离子体羽流演变过程进行了研究。由于放电电流振荡,推力器等离子体羽流存在二次建立过程。初始阶段等离子体羽流中主要包含带电粒子组分,二次建立阶段等离子体羽流主要包含中性成分。利用光电二极管阵列和窄带滤光片建立了飞行时间法,获得了不同放电电压、腔体内径和腔体长度下等离子体羽流分团的等效速度演变特性。结果表明,电热加速机制能够使带电组分和中性成分获得较为良好的加速效果(>10km/s)。在一定放电能量下,放电腔体长度小于25mm有利于获得较优性能参数。等离子体羽流等效速度结果能够较为准确地反映推力器输出比冲和效率参数变化规律,可作为推力器输出参数便捷有效的评估手段。  相似文献   

16.
脉冲等离子体推力器点火可靠性试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了得到PPT点火可靠性表征参量的内在联系及放电能量对其影响规律,开展了传统PTFE与掺碳PTFE两种工质的可靠性试验研究,通过记录点火故障率和分析放电延迟时间,得到了不同工质PPT的点火可靠性,为PPT点火可靠性分析提供了新的研究思路。研究结果表明:在不同放电电压下,PTFE工质PPT放电延迟时间随点火次数增加的变化规律明显不同。放电电压为1kV时,放电延迟时间在1μs~15μs内变化,在初始阶段时明显增加,然后在波动中上升,并伴随有点火故障发生;放电电压为1250V和1500V时,放电延迟时间在1μs~5μs之内波动,且没有点火故障发生。两种工质的放电延迟时间均随点火故障率增加呈非线性规律变化,掺碳PTFE的放电延迟阈值与放电电压之间呈指数函数规律变化。  相似文献   

17.
LHT-100霍尔推力器宽功率范围工作实验研究   总被引:4,自引:4,他引:0       下载免费PDF全文
田立成  郭宁  龙建飞  孙小菁  高俊 《推进技术》2014,35(9):1283-1289
为了研究兰州空间技术物理研究所口径为100mm的LHT-100霍尔推力器宽功率范围工作性能,从实验的角度研究了放电电压100~400V、放电功率500~1800W时LHT-100霍尔推力器的工作性能。实验结果表明,LHT-100霍尔推力器可以在较宽功率范围内正常工作,放电特性和推力性能稳定,推力变化范围为30~95mN,比冲变化范围为600~1950s,推力效率变化范围为18%~53%,功率推力比变化范围为14.3~18.4W/mN。  相似文献   

18.
采用自然辐射冷却结构的小功率电弧推力器,实现了以氮气为推进剂的长时间稳定运行。采用间接测力方法得到推力,利用铜镜反射法拍摄喉道处的放电状态,结合测量的弧电压、弧电流和气流量数据以及导出的比冲和推力效率,对推力器运行性能和放电特性进行了研究。结果显示:在气流量为100~700mL/min,输入功率为35~55W的条件下,最大推力约为24mN,最大比冲接近175s,当弧电流为80~120mA范围内变化时,弧电压变化范围为420~520V,并且弧电压随气流量的增加呈现出先下降后上升的趋势。   相似文献   

19.
脉冲等离子体推力器电源处理单元技术研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了进一步提高脉冲等离子体推力器点火的可靠性和使用寿命,采用理论计算和地面试验的方法,设计了一款可应用于立方体纳卫星脉冲等离子体推力器放电能量为2.6J的电源处理单元,其放电点火电路是基于LC振荡电路,且对放电点火电路的性能、开关管的电流应力和整个电源处理单元的稳定可靠性进行了研究。结果表明:LC振荡放电点火电路中,开关器件的电流应力较小,提高了整个电路的可靠性;该放电点火电路在输入电压800V时,点火电流的峰值可达到100A~150A,这种大电流放电有助于清除火花塞表面的积碳。  相似文献   

20.
为了进一步提高脉冲等离子体推力器点火的可靠性和使用寿命,采用理论计算和地面试验的方法,设计了一款可应用于立方体纳卫星脉冲等离子体推力器放电能量为2.6J的电源处理单元,其放电点火电路是基于LC振荡电路,且对放电点火电路的性能、开关管的电流应力和整个电源处理单元的稳定可靠性进行了研究。结果表明:LC振荡放电点火电路中,开关器件的电流应力较小,提高了整个电路的可靠性;该放电点火电路在输入电压800V时,点火电流的峰值可达到100A~150A,这种大电流放电有助于清除火花塞表面的积碳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号