首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究铝锂合金、纤维金属层板(玻璃纤维增强铝锂合金2/1层板及3/2层板)材料不同加载下的疲劳寿命性能特点,对每种材料进行疲劳寿命试验。通过对每种材料试样施加不同循环特征的循环应力(恒幅循环应力(应力比R=0.06)、单峰拉伸过载、单峰压缩过载),共获得了9种应力-寿命试验数据。使用样本信息聚集原理,拟合出了各材料的P-S-N曲线。通过比较相同材料不同加载方式及相同加载方式不同材料下S-N曲线的差异,结果表明:拉伸过载下3种材料均表现出过载迟滞效应;压缩过载下合金材料表现出加速破坏效应,层板材料表现出一定的延迟效应;不同结构层板之间疲劳性能的优劣与其所受远程应力的大小有一定关系。  相似文献   

2.
选用40Cr结构钢制备光滑试样和缺口试样(Kt=2.4),经调质并采用氮化进行表面强化。在旋转弯曲疲劳试验机和扭转疲劳试验机上测定氮化和未氮化试样在应力比R=-1条件下5×106循环周次的表象疲劳极限。试验结果表明,氮化后疲劳缺口敏感系数q趋近0,本文用疲劳裂纹萌生的微细观过程理论对此作了合理清晰解释。氮化使光滑试样的表象疲劳极限提高36%,使缺口试样的表象疲劳极限提高96%,并将疲劳裂纹源从表面"挤到"次表面层。在试验研究和理论分析的基础上,从疲劳性能方面提出了表面强化工艺的优化判定准则:若表面强化后疲劳裂纹源位于表面强化层下基体,或者其表象疲劳极限达到按"表面/内部疲劳极限概念"预测的数值,则此表面强化工艺已达到优化。  相似文献   

3.
考虑应力松弛的缺口疲劳寿命预测方法   总被引:4,自引:4,他引:0       下载免费PDF全文
为了能够快速准确获得循环载荷条件下缺口局部应力应变并用于缺口疲劳寿命预测,基于粘塑性本构方程及光滑试样循环应力应变试验结果,发展了一种应力应变简化计算方法,采用该方法计算得到的光滑试样循环应力应变结果与试验结果的误差在5%以内,并将该方法结合寿命预测方程采用迭代的方式用于粉末高温合金FGH97单边圆形缺口试样疲劳寿命预测。结果表明:所发展的方法充分考虑了FGH97合金单边圆形缺口试样缺口根部区域的应力松弛,取得了较好的寿命预测结果,其分散带基本在2倍以内。  相似文献   

4.
20kHz下TC17钛合金超高周疲劳性能研究   总被引:3,自引:3,他引:0  
应用基于压电超声疲劳试验技术开发的20kHz弯曲疲劳试验系统,完成了室温下TC17合金超高周疲劳试验.结果表明:在疲劳循环大于107周次时,试样仍会发生疲劳断裂,疲劳强度随循环次数的增加而下降,并不存在明显的疲劳极限.TC17合金的应力-寿命(S-N)曲线在107~109周次的范围内为连续下降型.光学显微镜发现,TC17合金的疲劳破坏主要起源于试样表面.当存在夹杂物时,疲劳裂纹从距离表面很近的夹杂物处萌生,能谱分析表明夹杂物的成分主要是铝的氧化物.   相似文献   

5.
TC4 钛合金扩散焊接头剪切疲劳性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究钛合金扩散焊接头在航空航天领域焊接性能的稳定性,制备了双搭接形式的接头试样,在温度为 910 ℃、压力为 3.4 MPa 条件下对 TC4 钛合金板材进行扩散连接,并对双搭接接头试样开展静强度试验,获得试样在焊缝界面处的平均剪切强度约为 199.4 MPa,试样断裂前后接头没有发生明显的塑性变形。此外,对双搭接接头试样还开展了不同载荷水平下的疲劳性能试验。结果表明:疲劳试样存在3种不同破坏模式。在高载荷水平下,试样会在切应力主导下发生基板与搭接板的完全脱焊;在低载荷水平下,试样会在正应力主导下发生基板沿厚度方向的断裂;在中等载荷水平下,试样先发生局部脱焊随后沿基板厚度方向断裂。 在上述失效模式分析的基础上,结合疲劳寿命试验数据分别得到接头的正应力 - 寿命和切应力 - 寿命曲线。  相似文献   

6.
7075铝合金在不同温度盐水环境中的腐蚀疲劳行为   总被引:4,自引:2,他引:2  
基于飞机结构材料7075铝合金在沿海地区服役时海水飞溅及曝晒导致的高温腐蚀疲劳损伤问题,研究了7075铝合金在35,55,75℃下3.5%NaCl溶液环境中的腐蚀疲劳寿命,并使用扫描电子显微镜(SEM)观察断口形貌,探讨了温度对腐蚀疲劳裂纹萌生扩展的影响机理。结果表明:同一应力水平下,温度越高,腐蚀疲劳寿命越短,300MPa时35,55,75℃下的中值寿命分别为33 001,30 931,15 346次循环。腐蚀损伤和疲劳损伤存在竞争关系,应力水平较高时,腐蚀较轻,试样寿命主要受应力水平影响,疲劳源多从铝合金基体与包铝层结合处萌生;应力水平较低时,腐蚀较严重,疲劳寿命随温度升高明显下降,疲劳源多从腐蚀坑处萌生。断口形貌显示高温环境主要通过加速腐蚀坑的形成来影响疲劳源的萌生,深坑状腐蚀坑应力集中严重,对疲劳性能伤害大。  相似文献   

7.
本文试验研究了TC4钛合金高压气瓶材料室温空气环境下的疲劳性能、测定了恒幅应力的疲劳寿命,比较了试样表面不同状况对疲劳寿命的影响。测定了两种较高应力下的循环变形量。讨论了试验期间的过载和间歇加载对循环变形的影响。试验结果表明,在最大载荷下有保持时问的低循环试验中,1000次循环内最大应力0.89б_(0.2)的累积塑性应变大约为1×10~(-2)最大应力0.59б_(0.2)的累积塑性应变大约为1×10~(-3)。  相似文献   

8.
对服役多年的高速列车用7N01铝合金材料进行疲劳裂纹扩展速率试验,其对数坐标系中的疲劳裂纹扩展速率da/d N与应力强度因子ΔK的关系呈折线形式。与未服役材料对比,在裂纹扩展初期阶段,裂纹扩展速率降低。选取两种原始铝合金材料进行107次预循环应力作用后的疲劳裂纹扩展速率试验,研究低于疲劳极限的预循环应力对材料断裂力学性能的影响。结果表明:经预循环应力作用的材料,其da/d N与ΔK的关系曲线在裂纹扩展初期(对应于低应力强度因子阶段)均出现折转现象。对试验数据的回归分析表明:预循环应力的作用使得材料的断裂力学性能有所提高,预循环应力对材料产生"锻炼"效应。  相似文献   

9.
定向凝固DZ4合金的低周疲劳行为与稳定循环应力   总被引:4,自引:0,他引:4  
对定向凝固DZ4合金760℃和800℃下的低周疲劳和稳定循环应力应变行为进行了研究,并结合断口观察试验结果,对其疲劳裂纹的萌生与扩展进行了分析。结果表明,DZ4合金760℃和800℃下的低周疲劳属应力疲劳,其损伤以弹性损伤为主,弹性损伤与疲劳寿命具有很好的相关性。加载频率对DZ4合金760℃和800℃下的稳定循环应力均具有一定的影响,尤其是800℃时,各应变下的稳定循环应力均随加载频率的升高而减小。定向凝固DZ4合金高寿命低周疲劳裂纹易于萌生于试样内部或亚表面的柱状晶界,其疲劳裂纹的稳定扩展也较难形成典型的疲劳条带。  相似文献   

10.
依据定向结晶合金DZ125光滑试样的低循环/保载疲劳试验寿命数据,提出一种预测定向结晶合金低循环/保载疲劳寿命的模型.此寿命模型可以同时考虑材料的晶向、平均应力、应变范围、应变比、最大应力对寿命的影响.接着研究DZ125合金光滑试样低循环/保载疲劳寿命与小孔构件低循环/保载疲劳寿命的关系,提出一种从光滑试样低循环/保载疲劳寿命数据预测小孔构件低循环/保载疲劳寿命的方法.应用本文提出的寿命模型,预测DZ125带小孔构件的低循环/保载疲劳寿命,并将预测寿命与小孔构件试验寿命对比,误差在2倍分散带左右.   相似文献   

11.
凹坑型硬物损伤对TC4材料疲劳强度的影响   总被引:1,自引:1,他引:0  
针对风扇/压气机叶片中叶盆/叶背遭受的硬物损伤(FOD)凹坑型损伤,进行了不同冲击角度下模拟FOD试验、损伤特征与应力集中分析,开展了冲击后不处理和冲击后去残余应力退火试样的高循环疲劳试验研究和疲劳强度的预测。结果表明:损伤深度和应力集中系数均随着冲击角度的增加而变大,损伤深度范围为0.1~0.5mm,应力集中系数范围为1.3~1.7。不同冲击角度条件下,凹坑型损伤试样疲劳强度相对光滑试样下降程度在50%~70%范围内,与应力集中系数并不是呈单调下降关系,最危险冲击角为60°。去残余应力退火后凹坑型损伤试样的高循环疲劳(HCF)性能有所提高,表明残余应力的影响程度不容忽略。去残余应力试样的HCF性能并不是随应力集中系数的增大而下降,验证了微结构损伤的影响,说明损伤深度作为制定可用极限或维修极限的唯一参量具有一定的局限性。对凹坑型损伤试样的疲劳强度的预测误差在±20%以内。   相似文献   

12.
对于时效前或时效后经过喷丸硬化处理的 Al-Cu-Mg(2014A)铝合金进行了平面弯曲疲劳和接触疲劳试验。时效后进行喷丸硬化处理,改善了高周循环范围内的平面弯曲疲劳和接触疲劳性能。时效前进行喷丸硬化处理,改善了低周循环范围内的平面弯曲疲劳和接触疲劳性能。试验过程中,尤其是在接触疲劳试验状态下,喷丸硬化产生的表面压应力下降,时效前的喷丸硬化处理可使这种下降明显减少,说明了为什么这种处理可以改善低周循环范围内的疲劳性能。  相似文献   

13.
根据高压压气机盘螺栓孔结构,设计中心孔板材疲劳试样.表征了孔挤压强化后的表面轮廓,分析了在多种交变载荷条件下孔挤压前后试样的疲劳寿命,并进行了断口观察和疲劳过程中孔挤压残余应力的演化分析.结果表明:孔挤压强化减小了孔壁表面粗糙度,并使孔结构在多种高温大应力条件下(825MPa/600℃、825MPa/400℃和663MPa/600℃)的高温疲劳性能提高1~3倍,但疲劳数据分散度略有增大.孔挤压残余应力在最大拉应力为663MPa,温度为600℃,应力比为01条件下20000次疲劳试验中松弛到60%.原始试样的多源疲劳断口主要起源于孔边的加工刀痕,而挤压强化试样断口起源于孔挤压在倒角区域流动金属堆积处,为单源疲劳断口.   相似文献   

14.
对Ti6Al2ZrMoV 精密铸件进行了400、460 和 520 MPa 三种不同应力水平下的疲劳性能试验.试验载荷采用三角波和轴向循环加载,加载系数 K=0.4,应力比 R = 0.1,且在等幅应力下进行.结果表明,400和 460 MPa 应力水平下,铸造 Ti6Al2ZrMoV 合金具备良好的疲劳性能.随着应力水平的提高,疲劳寿命显著下降,520 MPa 应力水平下的疲劳寿命均值仅为36.8×104周次.断口观察和分析表明,精密铸件内部冶金缺陷和表面质量等因素,是影响合金疲劳性能的主要原因.  相似文献   

15.
FGH97缺口试样基于黏塑性本构的弹塑性响应分析   总被引:2,自引:0,他引:2  
针对缺口试样在高温条件下局部区域应力应变难于测量的问题,基于光滑试样材料力学性能试验,优化得到550℃粉末高温合金FGH97的Chaboche黏塑性统一本构方程参数,并将其应用到FGH97缺口试样单调拉伸及循环加载弹塑性有限元分析中.研究结果表明:①缺口局部区域进入塑性后其应力分布与弹性条件明显不同,随应力增大,最大应力位置向内移动;②在循环载荷条件下,随着循环数的增加,缺口平分线上应力/应变范围变化不大,缺口根部塑性区域出现明显平均应力松弛,并逐渐趋于稳定,导致缺口根部循环载荷比不同于外部施加载荷;③缺口根部塑性区域逐渐增大,但增大的幅度逐渐降低.该研究可为进一步分析缺口构件疲劳寿命影响因素提供支持.   相似文献   

16.
基于实际大涵道比航空涡扇发动机宽弦风扇叶片的结构特征,设计、加工了空心风扇叶片结构模拟件,完成了空心风扇叶片高循环疲劳试验设计,并着重对其叶身空心结构部分抗疲劳能力进行了试验验证.试验结果表明试验夹具和试验件的设计能够完成空心风扇叶片高循环疲劳考核的目的.同时,该空心风扇叶片结构叶身部分对应1×107次循环的高循环疲劳强度介于370MPa至400MPa之间,满足其在最大工作状态下疲劳强度不小于324MPa的高循环疲劳设计要求.因试验件数量相对较少,仅获得了给定应力水平下的高循环疲劳寿命数据,后续可按照该技术途径和方法流程适当增加试验件数量,以获取疲劳极限进而构建其应力-疲劳寿命曲线,为工程研制奠定基础并积累数据.   相似文献   

17.
通过对TiAl合金进行总应变范围控制的高温(750℃)低循环疲劳实验,研究双态(Duplex,DP)和全片层(Fully Lamellar,FL)组织形态对TiAl合金低循环疲劳性能和寿命的影响,并采用总应变幅-寿命方程对两类组态TiAl合金低循环疲劳寿命进行预测。结果表明:在相同温度和应变条件下,DP组态TiAl合金稳态迟滞回线对应的平均应力明显低于FL组态TiAl合金稳态迟滞回线对应的平均应力;采用总应变幅-疲劳寿命方程能够准确预测两种组态TiAl合金在750℃下的疲劳寿命,预测寿命基本位于试验寿命的±2倍分散带以内;另外,DP组态TiAl合金的疲劳源区位于试样的近心部,而FL组态TiAl合金的疲劳源区位于试样的次表面,两类组态TiAl合金的高温疲劳失效机理存在明显差异。  相似文献   

18.
FGH95粉末盘材料热/机械疲劳和等温低周疲劳断裂行为研究   总被引:3,自引:0,他引:3  
对粉末冶金盘材料 FGH95进行了同相位 ,温度循环为 3 5 0℃到 60 0℃的热 /机械疲劳试验和 60 0℃的等温低周疲劳试验。考察了两种载荷波形下材料的循环应力响应行为和高温疲劳断裂机理以及载荷波形对疲劳寿命的影响。研究结果表明 :同相位热 /机械疲劳寿命比上限温度的等温低周疲劳寿命短。该材料在高温应变疲劳的循环应力响应行为与应变水平的大小以及循环载荷波形有关。试样的微观断口分析显示了在高温应变疲劳试验中同时存在疲劳、蠕变和氧化损伤。在同相位热 /机械疲劳载荷下 ,穿晶 +沿晶断裂为疲劳断裂的主要特征 ;在等温低周疲劳载荷下 ,裂纹主要为穿晶萌生与扩展   相似文献   

19.
对LTX1240玻璃纤维/环氧复合材料开展拉-压疲劳试验,绘制S-N曲线进行疲劳寿命预测,利用扫描电镜观察疲劳试样断口形貌,分析其在拉-压循环载荷作用下的失效模式。结果表明:LTX1240玻璃纤维增强环氧树脂基复合材料的条件疲劳极限为278 MPa;失效过程为树脂基体最先破坏,接着界面分层乃至纤维拉伸、剪切破坏,它们相互作用形成了弥散损伤区并据此扩展发生材料断裂。  相似文献   

20.
对GH4169合金中心孔板材试样进行冷挤压强化,测试了挤压前后GH4169中心孔板材试样在663 MPa/20℃条件下的低循环疲劳寿命;分别采用扫描电镜、X射线衍射残余应力仪、表面轮廓仪分析了疲劳断口、疲劳过程中残余应力场的演化以及表面形貌。结果表明:冷挤压强化后孔结构的疲劳寿命提高为原始试样的2.6倍。冷挤压强化对孔壁的强化效果使得冷挤压试样疲劳源萌生于倒角处单源,而原始试样萌生于孔壁多源。经过50000周次疲劳实验,冷挤压强化残余压应力有所松弛,但进口端与出口端的表面残余应力分别保持了55%和75%。冷挤压后孔壁表面粗糙度R_a由0.354μm减小到0.297μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号