首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
研究了C/SiC复合材料氧化烧蚀机理,发现它们与传统的硅基和碳基材料烧蚀有很大差别。C/SiC的烧蚀取决于氧的分压、表面温度和材料晶态结构及成份,可能出现活性氧化和惰性氧化两种破坏机制。研究了氧化膜的形成和破坏条件,以及氧化膜中氧气的扩散机制,建立了适用于C、Si、SiC和C/SiC(C和SiC可有不同混和比)四种材料烧蚀计算的通用物理数学模型。  相似文献   

2.
在碳基体材料中添加ZrB2抗烧蚀组元,经过热压固化成型、炭化处理制得改性碳基复合材料。经过1 500℃静态抗氧化实验后,对比发现添加ZrB2的复合材料抗氧化能力得到提高。通过SEM观察发现ZrB2在高温下被氧化形成致密保护层,能有效阻止氧气扩散进入碳基体。通过热力学计算进一步分析了碳基复合材料在制备和高温氧化过程中的化学反应机理。  相似文献   

3.
以一种含分散的纳米氧化锆的沥青作为黏结剂或浸渍剂,通过热压和浸渍工艺制备出含锆石墨和碳/碳复合材料。采用扫描电镜对样品中锆的分散状况进行了表征。结果表明:锆元素是以1μm左右的颗粒均匀分散在含锆石墨和碳/碳复合材料中。含锆石墨和碳/碳复合材料在氧-乙炔烧蚀试验中,由于锆的存在使不同种类碳之间的烧蚀趋于一致,材料表面烧蚀更加均匀。  相似文献   

4.
碳纤维增强SiC基复合材料(C/SiC)因具有耐高温、抗氧化、高比强和高比模等优点,被认为是代替高温合金作为热结构材料最有潜力的备选材料之一。由于碳纤维抗氧化性能差以及SiC基体在超高温烧蚀环境下氧化产物易挥发等问题,需要对C/SiC复合材料进行抗烧蚀改性。目前,针对C/SiC复合材料抗烧蚀改性的途径主要有优化碳纤维预制体结构和增加复合材料的致密度、采用超高温陶瓷改性SiC基体以及在复合材料表面制备抗烧蚀涂层。综述了国内关于C/SiC复合材料抗烧蚀改性的研究工作,同时提出了抗烧蚀改性制备工艺过程中面临的关键问题,为C/SiC复合材料抗烧蚀改性研究提供了思路。  相似文献   

5.
介绍了在电弧加热器上进行的SiC的抗氧化机制研究试验,根据SiC的主动、被动氧化机制,调试出相应试验条件并进行了模型试验.结果表明,SiC在一定的氧分压环境中,表面温度低于转捩温度时,会在表面形成SiO2薄膜,阻止氧向防热层内部扩散,降低了碳同氧的反应程度,阻止了基体碳的烧蚀;当表面温度高于转捩温度时材料发生主动氧化,材料表面发生烧蚀.  相似文献   

6.
为考察纳米孔径的酚醛树脂基泡沫碳材料的烧蚀与隔热性能,以酚醛树脂为碳源,环戊烷为发泡剂,吐温80为表面活性剂,对甲苯磺酸为固化剂,采用发泡固化碳化工艺制备了低密度泡沫碳材料。所制备的泡沫碳材料密度为0. 3 g/cm^3,压缩强度达到了11. 7 MPa。采用LFA457激光导热仪考察了泡沫碳材料在不同温度下(25、200、400、600℃)的导热性能,25℃下热导率为0. 141 W/(m·K),600℃下热导率为0. 344 W/(m·K);通过氧乙炔试验(30 s/60 s)对泡沫碳材料与C/C复合材料在同样的气流条件下隔热性能进行了比较,在材料正面烧蚀峰值温度泡沫碳材料比C/C复合材料高出约400℃的情况下,背面峰值温度比C/C复合材料仍低出150℃;通过氧乙炔试验考察泡沫碳材料的抗烧蚀性能,氧乙炔烧蚀60 s的线烧蚀率为0. 031 mm/s。试验结果证明低密度的泡沫碳材料同时具备优异的隔热与高温抗烧蚀性能。  相似文献   

7.
研究了一种在C/C复合材料中掺杂难熔金属化合物的新方法:溶胶-凝胶法。利用醋酸锆溶胶对密度为1.39和1.59 g/cm3的C/C复合材料进行浸渍,凝胶化后,再进行炭化处理,在C/C复合材料中引入了难熔金属化合物ZrC。经若干次处理后,两种C/C复合材料的密度最终分别达到1.88和1.86 g/cm3。利用电子背散射测试观察Zr在C/C复合材料中的分布,发现在C/C复合材料表面多次凝胶沉积形成一层Zr的涂层,而在材料的内部Zr的分布主要依赖于材料本身孔洞的分布以及纤维束间的孔隙。对电弧烧蚀后的Zr-C/C复合材料进行表观形貌观察,发现在材料表面形成均匀的ZrO2膜,将基体与氧气隔绝,从而减缓材料的烧蚀速率。  相似文献   

8.
轴棒法编织C/C复合材料的超声速火焰烧蚀性能   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究轴棒法编织、高压浸渍-碳化致密工艺(HPIC)及高温处理工艺制成的高密度的碳/碳(C/C)复合材料在火箭发动机中的烧蚀性能,使用气氧和煤油超声速(HVO)火焰对复合材料进行含铝工况烧蚀/侵蚀实验,烧蚀时间为30s;对比研究了复合材料在有、无含铝粒子侵蚀时烧蚀性能的差别;分别用扫描电镜、微CT和表面能谱分析了不同工况烧蚀表面的形貌和成分。结果表明,在不同的烧蚀工况下,材料的表面粗糙度不同,微观形貌和烧蚀率也有很大差异;复合材料在无粒子侵蚀工况下的线烧蚀率和质量烧蚀率的平均值分别是0.0318mm/s和0.0319g/s,烧蚀表面呈竹笋状和毛絮状,热化学烧蚀起主导作用;有粒子侵蚀时的线烧蚀率和质量烧蚀率的平均值分别是0.0516mm/s和0.0353g/s,烧蚀表面呈钝竹笋状,纤维从根部断裂,热化学烧蚀和机械剥蚀同时起作用;在纤维和基体表面有Al2O3粒子沉积;含铝烧蚀/侵蚀的线烧蚀率是不含铝烧蚀的1.6倍,质量烧蚀率的1.1倍。在烧蚀区的内部,基体碳受热后开裂,而碳纤维与基体碳间的界面相受热后无明显变化。  相似文献   

9.
防热-介电材料也叫防热-无线电透波材料,多数为陶瓷基复合材料,有石英玻璃、三向石英立体织物浸渍硅树脂或硅溶胶等,均属熔化型烧蚀,生成的液膜具有较高的粘度、不碳化并能继续保持透波性能。它可与玻璃/酚醛、高硅氧/酚醛、碳/酚醛防热材料相匹配使用,用于导弹弹头天线窗防热-介电盖板。  相似文献   

10.
对比研究碳化铬/Ni3Al复合材料和传统高温耐磨材料Stellite 12合金在1000℃时的高温氧化行为.结果表明,Stellite 12合金表面形成以Cr2O3为主的氧化膜,并发生明显剥落;而碳化铬/Ni3Al复合材料表面形成以α-Al2O3为主的致密氧化膜,其空气中的氧化速率仅为Stellite 12合金的1/2,碳化铬具有良好的抗氧化稳定性并与Ni3Al基体有较好的氧化协同性.分析认为,碳化铬在堆焊过程中发生溶解导致部分Cr固溶于Ni3Al合金基体中,促进α-Al2O3的形成,从而改善复合材料的抗氧化性.而材料表面所形成的氧化膜类型是两种材料抗氧化性差异的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号