首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铝合金和不锈钢导管高频感应钎焊研究   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对航天、航空飞行器管路系统常用材料(铝合金和不锈钢)的薄壁、小直径异材管路结构高频感应钎焊工艺试验研究,重点叙述了试验工艺、分析了影响接头质量的主要因素,并观察分析了接头微观组织和元素分布情况.结果表明:采用本试验研究中确认的合理工艺参数(钎料为AI-Si、钎剂为自制铝钎剂、装配间隙为0.04~0.1 mm、搭接长度为3 mm、钎焊电流为220 A、钎焊时间为30~33 s)焊接,能够获得质量优良和满足性能要求的不锈钢和铝合金导管钎焊接头,为航天、航空飞行器薄壁、小直径异材管路结构的工程应用提供了技术基础.  相似文献   

2.
前言飞行器导管连接接头不仅数量众多而且要求能连拆和密封可靠。过去一般均采用螺纹球头作为连接接头。为减轻接头重量和空间,近年来在国外导管总装全位置高频钎焊和徐钎技术得到了发展并成功地满足了密封、操作简便等要求。但是,美苏对本工艺一直实行封锁。  相似文献   

3.
研究了不同的钎料成分和使用形式、钎焊间隙、钎焊温度和保温时间对TA2纯钛钎焊接头的成形和钎缝组织形态的影响。试验结果表明,与用纯Cu钎料相比,用Ti-Zr-Ni-Cu钎料可以更容易得到好的等温凝固钎缝组织。而用纯Cu钎料,则价格低,也可得到致密的成形漂亮的钎焊接头,但代价是接头的塑性较低。  相似文献   

4.
介绍了一种用于飞机制造过程中导管连接的高频感应钎焊工艺 ,分析了该工艺的技术要点及影响钎焊接头质量的因素 ,确定了焊接工艺参数 ,提出了导管钎焊缺陷的几种处理方法  相似文献   

5.
高性能发动机加力泵叶轮的真空钎焊   总被引:1,自引:0,他引:1  
用叠层状钛基钎料Ti-20Cu-13Ni真空钎焊(或钎焊并扩散)TC4钛合金,可获得抗氧化、耐腐蚀、高强度的接头,并已成功用于高性能发动机钛叶轮的钎焊。  相似文献   

6.
综述了钛及钛合金高温钎焊结构在现代工业中的应用。在分析了钛基钎料应用和发展的基础上,重点分析了钎焊接头的组织与接头性能的关系以及影响因素。指明接头组织中脆性金属间化合物相的存在形态是决定接头性能的主要因素,接头间隙和钎焊时间决定了接头的组织形态,从而影响接头的性能。钛及钛合金高温钎焊接头的拉伸性能、高温性能和疲劳性能是优越的,而接头氧化后的性能急剧下降。并展望了钛基材料连接的发展方向。  相似文献   

7.
TC4钛合金真空钎焊的研究   总被引:2,自引:0,他引:2  
用钛基钎料钎焊的钛合金焊接接头强度较高,因而具有一定的应用前景。本课题采用Ti-Zr-Cu-Ni钎料并加入适当的合金元素,成功地应用于TC4合金的钎焊,钎缝成形良好,提高了焊接接头的性能。  相似文献   

8.
采用钛基钎料Ti37.5Zr15Cu10Ni作为中间层对TA15钛合金进行了真空扩散钎焊,对扩散钎焊接头界面微观组织进行了分析,同时测试了接头室温和液氮低温力学性能。试验结果表明:钎料与TA15基体发生了快速的互扩散,焊缝微观组织全部呈针状,接头室温和液氮低温状态下均脆断于焊缝,室温拉伸强度达到基体材料拉伸强度的93.8%。  相似文献   

9.
GH169镍基合金经电解加工制成带“新月形”横断面叶片的整体涡轮盘,每五片叶片的顶端需焊上一条不锈钢叶冠。为解决这一焊接问题,研制了高频感应连续顺序钎焊工艺,成功地研制出符合设计要求的优质产品。本文还对钎焊料的选择钎焊工艺参数的确定、钎焊加热对基体金属性能的影响等,作了较为详细的介绍。预计本技术同样适合于大型圆盘锯(硬质舍金-钢)的钎焊、巨型金属圆桶桶底的焊接和大直径圆盘齿轮的淬火处理。  相似文献   

10.
目前,有些飞机上的各种不锈钢油滤,是采用银基钎料、高频加热或火焰加热钎焊的。用银基钎料高频或火焰加热钎焊时,需要填加钎剂,而钎焊后的钎剂残渣必须经超声波清洗,否则会引起腐蚀。此外,高频磁场对人体有害,火焰加热除温度难于控制外,劳动条件亦恶劣。真空炉钎焊具有控温准确、不用钎剂、被焊件变形小、生产率高、容易操作、劳动条件好等一系列优点。因此,开展真空与保护气体相结合(亦称载流法)的炉中钎焊不锈钢油滤的  相似文献   

11.
钛及其合金具有比强高,耐蚀性强等特点,是制造航空热交换器的理想材料,但是在钎焊方面仍有一些难度。本文就板翅式热交换器钎焊的工艺方面做了一些试验和讨论,对钎焊过程中的保护,钎焊规范、钎料选择等作了探索。  相似文献   

12.
钎焊时要想获得优质钎焊接头,除了正确的工艺参数(真空度、钎焊温度、保温时间)起决定作用之外,下列因素也会严重影响钎焊质量。一、钎焊间隙它的大小直接决定着钎缝致密性及强度。间隙太大,毛细作用丧失,钎料填充困难,钎缝的合金化作用弱,形成接头机械性能较差。尤其对于两端开阔的接头(如图1),液态钎  相似文献   

13.
采用Ni-Cr-B钎料分别在1120℃/10 min和1120℃/10 min/2 MPa的工艺下实现FGH96与DD6的钎焊连接。测试两种工艺下接头的抗拉强度,通过光学显微镜(OM)、扫描电子显微镜(SEM)和电子探针(EPMA)分析接头的组织、成分和断口。结果表明:真空加压钎焊所得接头的室温平均抗拉强度达到1187 MPa,远高于真空钎焊接头621 MPa的强度;与不加压的真空钎焊相比,真空加压钎焊所得FGH96/DD6接头的钎缝中心没有平行于被焊面的晶界,而是单个晶粒贯穿整个钎缝,并与母材连接面发生韧性断裂;真空钎焊接头中存在Ni3B相,而真空加压钎焊钎缝中并没有残留的Ni3B相,主要由(Ni,Cr)固溶体组成。  相似文献   

14.
采用制备的一种新型中温铝基钎料箔(熔点513~529℃),在530~550℃对LD2铝合金进行真空钎焊试验。测试钎焊接头的室温抗拉性能,采用扫描电镜(SEM)及能谱仪(DES)对钎焊接头组织和断口形貌进行观察分析。试验结果表明,制备的钎料可用于LD2铝合金的真空钎焊,在优化工艺规范下可获得致密的接头,焊后经热处理,钎焊接头平均室温抗拉强度可达300MPa,断口是以典型韧窝为特征的塑性断口。  相似文献   

15.
本文研究了加有不同数量锂的Ag-7.5Cu、Ag-30Cu-5Ni和Cu-30~35Mn-5Ni钎料。试验表明,上述钎料在氩气保护下具有最好的润湿性,其中尤以铜锰镍锂钎料的润湿性为最好,银铜镍钎料次之。真空除气可提高钎料的自钎剂效果,并且确定了合适的加锂量。不锈钢搭接钎接接头的强度试验表明,以铜锰镍钎料钎接的接头的抗剪强度为最高。但从抗腐蚀性出发, 以银铜镍锂钎料钎接的接头具有最好的抗腐蚀性。用Ag-7.5Cu-0.75Li、Ag-30Cu-5Ni-0.5Li和Cu-30Mn-5Ni—0.5Li钎料在氩气保护下钎接了不锈钢蜂窝试件。确定了这些钎料的钎接温度、钎料同基本金属的作用、钎接接头的强度和抗腐蚀性等。结果表明,Ag-30Cu-5Ni-0.5Li钎料具有比较合适的综合性能。  相似文献   

16.
镍基三号高温钎焊合金是一种典型的镍基高温钎料,具有优良的钎焊工艺性能、耐高、低温性能和耐多种介质腐蚀的性能,广泛用于各类不锈钢、耐热钢和高温合金等材料的真空钎焊、气保护钎焊及高频感应钎焊。 本文简要地对该合金的钎焊性能及应用情况作了介绍。  相似文献   

17.
用新型镍基钎料3P1对K403合金进行真空钎焊试验,分析钎焊接头的微观组织和连接机制,测试接头高温力学性能.结果表明:采用3P1钎料,在1230℃/10min 1160℃/4h条件下进行K403合金钎焊,可以获得无缺陷的,与基体组织相似的钎焊接头,其1000℃下高温拉伸强度可以达到基体强度的90%,高温持久强度可以达到基体强度的70%以上.  相似文献   

18.
锡、镓对铝钛异种合金真空钎焊的影响   总被引:4,自引:0,他引:4  
在铝硅钎料中加入一定比例的锡和镓元素,具有改善接头组织形态、降低钎料熔点、提高钎料润湿铺展性、提高钎焊接头机械性能的作用,从而有效的改善了铝钛异种合金真空钎焊的工艺性能。  相似文献   

19.
本文利用AgCuTi-W复合钎料作中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料与Ti合金,利用SEM,EDS,XRD分析接头微观组织结构,利用剪切试验检测接头力学性能。研究结果表明:钎焊时,复合钎料中的Ti借助Cu-Ti液相与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成Ti3SiC2,Ti3Si和少量TiC化合物的混合反应层。复合钎料中的Cu与Ti合金中的Ti发生互扩散,在连接层与Ti合金界面形成不同成分的Cu—Ti化合物过渡层。钎焊后,形成W颗粒强化的致密复合连接层,W颗粒主要分布在Cu-Ti相中。W的加入缓解了接头的残余热应力,Cf/SiC/AgCuTi—W/TC4接头剪切强度明显高于CF/SiC/AgCuTi/TC4接头。  相似文献   

20.
针对TA15钛合金复杂精密构件设计制造可能的需求,采用Ti-21Cu-13Zr-9Ni钎料材料对TA15合金进行了真空钎焊。通过扫描电镜与能谱分析等手段,对钎焊接头界面的元素分布及钎焊接头的组织进行分析;同时测试了接头室温和高温力学性能。实验结果表明:采用Ti-21Cu-13Zr-9Ni钎料钎焊TA15钛合金合理可行;真空钎焊接头通过扩散处理,可以提高接头强度,接头室温和高温拉伸强度分别达到母材的98%和94%;真空钎焊接头脆断于钎缝,扩散处理后的接头韧断于基体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号