首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
双方程k-ω剪切应力输运(SST)湍流模型通常以隐式耦合方式或者显式半耦合/解耦的方式来求解。本文提出了该模型的一种显式耦合应用方法,即通过点隐的方式来处理湍流源项的刚性,并与混合Runge-Kutta时间推进以及当地时间步长、隐式残差光顺等加速收敛技术相结合,从而使得湍流方程可以与流动方程同时求解。为了增强计算的鲁棒性,进一步对湍流变量进行了限制。将所发展的方法用于DLR平面叶栅算例,确认了求解结果的正确性以及刚性的来源。通过对三维NASA Rotor 67的模拟,验证了SST模型的精度;进一步将其与Badwin-Lomax(BL)模型、Spalart-Allmaras(SA)模型对比,发现三者都能正确地捕捉出口参数分布,且SST与SA模型的模拟结果比较一致;对于该算例,SST模型在总温模拟上更具优势,而BL模型在总压分布上与试验值更加接近。  相似文献   

2.
隐式紧耦合SST和TNT湍流模型的高速流动数值模拟   总被引:1,自引:1,他引:0  
将SST(shear stress transport)和TNT(turbulent/non-turbulent)湍流模型输运方程与平均流场控制方程进行隐式紧耦合求解,结合当地时间步长方法和湍流源项隐式处理确保求解过程的快速和稳定.采用AUSMPW+(AUSM by pressure-based weight functions)格式和LU-SGS(lower-upper symmetric Gauss-Seidel)隐式紧耦合方法对高超声速压缩拐角流动、锥柱裙流动和超声速非对称激波/边界层干扰问题进行了数值模拟.计算结果与实验值的对比表明:SST模型和TNT湍流模型可以很好地预测15°压缩拐角流动的壁面压力和热流密度;随着压缩拐角的增大,计算结果与实验值偏差增大;可压缩性修正对压缩拐角流动的压力和热流密度分布有很大影响,对超声速非对称激波/边界层干扰流动影响很小;隐式紧耦合方法比显式紧耦合方法具有更好的收敛特性.   相似文献   

3.
风力机标模非定常数值模拟中的影响因素研究   总被引:1,自引:0,他引:1  
基于自主研发的“亚跨超 CFD 软件平台”(TRIP3.0),采用刚性运动网格技术和动态拼接网格技术,开发了针对旋转类机械的非定常求解模块。本文开展了 NREL Phase VI 风力机标模非定常数值模拟中的影响因素研究,影响因素主要包括不同时间步长的影响、不同湍流模型的影响、刚性动网格技术和动态拼接网格技术的影响三个方面。本文数值模拟采用的控制方程为雷诺平均 N-S 方程,采用有限体积法离散控制方程,离散方程的时间方向采用“双时间步”方法求解,空间方向无粘项离散采用 MUSCL-Roe 格式,湍流模型采用 SA 和 SST 湍流模型,并引入多重网格和并行计算技术加速求解。数值模拟结果表明:时间步长、湍流模型、网格方案等因素主要影响风力机叶片吸力面的流动结构,进而影响吸力面的压力分布,而对压力面的流动结构和压力分布基本没有影响;采用刚性运动网格结合 SA 湍流模型所得到的压力分布更接近实验值。  相似文献   

4.
涡粘性湍流模型广泛应用于各种工程湍流问题的计算。对于大多数湍流模型,在湍流控制方程的右端会出现源项,其刚性给数值计算带来很大的影响。从源项的物理意义出发分析了源项导致求解困难的原因,并在通用的求解湍流模型方程的点隐法基础上,以源项弱刚性的S-A湍流模型和源项强刚性的k-ωSST湍流模型为例,论述了生成项和耗散项之间的平衡关系对数值模拟的重要意义,给出了针对不同源项的具体处理方法。对RAE2882翼型跨声速流动算例的模拟结果表明,这些处理方法有效的提高了控制方程组的计算稳定性。  相似文献   

5.
多重网格加速的LUSGS算法用于喷管流场数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
胡海洋  王强 《推进技术》2008,29(3):318-323
采用有限体积法,二阶精度插值的Roe格式对三维流场N-S方程进行空间离散;采用LUSGS隐式时间推进法和多重网格技术加快计算收敛速度;采用独特的显式算法克服了两方程湍流模型刚性对流场计算收敛速度的影响,并给出了该方法的理论依据。通过轴对称喷管内流场、二元喷管内外流场的数值模拟验证了采用以上方法在计算效率上的提高。最后将RNG模型计算结果与SA模型计算结果及实验数据做对比分析。  相似文献   

6.
数值模拟是飞行器设计的重要工具,如何精确模拟分离流动,其关键在于选择合适的湍流模型。针对分离流动中典型的后台阶流动,采用不同的湍流模型进行三维数值模拟分析,其中包括Spalart-Allmaras(简称SA)湍流模型、两方程k-Omega SST(简称SST)湍流模型和显式代数雷诺应力模型(EARSM),并与实验结果进行比较。研究结果表明:EARSM对于后台阶分离涡回流区的模拟结果最好,优于SA与SST湍流模型,SA模型对于剪切层模拟稍好一点。综合来说,EARSM模型对于回流区分离涡的模拟较好,在剪切层位置其模拟结果也和实验较为接近,能较好地反映后台阶的分离流动。  相似文献   

7.
脉冲式燃烧风洞起动特性数值研究   总被引:4,自引:2,他引:2       下载免费PDF全文
利用计算流体力学软件Fluent,采用隐式双时间步方法模拟非定常过程,控制方程的离散采用二阶迎风格式,湍流模型选择剪切应力输运(SST)k-ω模型,并求解组分扩散方程,对脉冲式燃烧风洞的起动过程进行了数值模拟,分析了喷管起动时流场结构的变化情况和自由射流区超声速流场的建立过程.计算结果为改进风洞起动特性提供了一定的参考依据.  相似文献   

8.
在工程实际中,一方程湍流模型或两方程湍流模型的求解通常和雷诺平均Navier-Stockes (RANS)方程的求解是解耦的,也称之为松耦合求解.在松耦合求解过程中,RANS方程和湍流模型方程通常采用不同的数值方法异步求解.这种求解方式很容易产生因两者计算精度不一致而引起的额外数值耗散.为了消除这种耗散,将RANS方程与Spalart-Allmaras模型方程耦合成一个系统方程——强耦合RANS方程,并发展了一种用于求解该系统方程的高效强耦合算法,其中对流项离散采用了Roe格式,时间项的离散采用了隐式LU-SGS(Lower-Upper Symmetric Gauss-Seidel)格式,为了提高计算效率,采用了三层V循环多重网格方法.通过翼型/机翼和振荡翼型/机翼等算例验证了本文发展的强耦合算法不仅具有较好的收敛性,而且计算精度明显优于松耦合算法,特别对于阻力的预测,强耦合算法更加准确.  相似文献   

9.
小轿车绕流场数值计算和分析   总被引:8,自引:0,他引:8  
本文求解了雷诺平均Navier-Stokes方程,湍流的模拟采用了标准的两方程模型,修正的两方程模型,亚格子模型的大涡模拟三种要用有限体积方法离散求解Navier-Stokes方程。对流项的计算采用三阶迎风格式。为了提高求解过程的稳定性,采用显隐式混合格式来获得主对角元素区域占优。  相似文献   

10.
针对航天器再入解体形成残骸碎片的近空间绕流计算问题,拓展了格子Boltzmann方法在可压缩流动模拟的能力。引入有限体积隐式格式求解耦合双分布函数格子Boltzmann模型方程及采用圆函数为基础构造的D2Q13离散速度模型;引入IMEX-RK格式进行了时间项离散解决模型方程的源项刚性问题;对Riemann问题、平板双马赫反射问题、RAE2822翼型跨声速绕流等近空间连续流区、可压缩典型案例进行了数值模拟。通过比较分析,初步验证了耦合双分布函数有限体积格子Boltzmann方法对连续流区、可压缩流动的模拟能力;进一步开展了方柱形解体残骸的超声速绕流模拟,得到与N-S方程计算结果吻合一致的绕流结果,证实经改进的耦合双分布函数有限体积格子Boltzmann方法对解体残骸碎片绕流问题具有较好的模拟能力。  相似文献   

11.
高超声速压缩拐角湍流计算的收敛性分析   总被引:1,自引:0,他引:1  
应用基于shear stress transport(SST)湍流模型的隐式紧耦合方法对高超声速压缩拐角流动进行了数值计算.考察了差分格式、限制器以及湍流时间步长等7个因素对湍流计算过程稳定性和收敛性的影响.结果表明:差分格式和限制器对收敛性有很大影响,总体而言耗散性越大的差分格式和限制器收敛性越好;增加湍流时间步长对收敛性影响很小;适当降低湍流变量最低限制值有利于湍流方程的收敛;增大Courant-Friedrichs-Lewy(CFL)数和隐式内迭代次数可显著加速收敛,但均存在最优值,超过最优值则加速效果不明显.   相似文献   

12.
通过发展一种点-点对接的结构/非结构混合网格生成方法,避免了复杂积冰外形难以划分结构化网格的问题,并对复杂积冰翼型的气动性能进行了分析计算.在靠近积冰边界的内层采用了非结构网格以拟合复杂的边界,在非结构网格外采用结构化网格以节省存储空间和计算时间.为了检验网格对选用湍流模型的影响,整个流动区域分别采用SST和SA湍流模型,求解了雷诺平均N-S方程.数值计算结果表明SST模型更适于模拟复杂分离流动,积冰对翼型的气动性能造成了严重的影响.  相似文献   

13.
基于TRIP2.0_SOLVER数值模拟软件,开发了湍流模型方法库,目前该CFD软件中集成的湍流模型主要包括B-L代数湍流模型、SA一方程模型和SST两方程模型.为了考核不同的湍流模型工程适用性,本文采用对接网格技术,通过有限体积法数值离散三维任意坐标系下的RANS方程组,应用LU分解、MUSCL差分格式和低雷诺数SA和SST两种湍流模型,数值模拟了二维NLR-7301两段翼型和三维DLR-F6翼身组合体的绕流流场,计算与试验比较的内容包括了表面的压力系数分布、典型站位的速度型和气动特性曲线等内容.通过计算与试验的比较,在本文的计算范围内,采用两种湍流模型均可以得到与试验结果相吻合的压力分布和升力曲线,但在边界层内的速度型、粘性阻力和力矩特性等方面,不同的湍流模型具有明显的差异.  相似文献   

14.
基于S-A湍流模型和间歇因子输运方程的转捩流数值模拟   总被引:1,自引:0,他引:1  
杜磊  宁方飞 《航空动力学报》2015,30(10):2450-2461
考虑到γ-Reθt转捩模型中间隙因子输运方程并不依赖于具体的湍流模型,因而提出了耦合S-A湍流模型和间歇因子输运方程的转捩流模拟方法.其主要思想是构造与间歇因子相关的两个耦合函数,分别作用到S-A模型的生成项和耗散项用以控制湍流的产生与发展,从而实现层流到湍流的数值转捩.结果表明:该方法中模型方程具有完全当地性的特点,易于实施,可直接用以求解三维转捩流动.4个典型算例表明该方法模拟结果与γ-Reθt模型准确度相当,但少求解了两个输运方程,计算耗时减少了15%.   相似文献   

15.
As boundary layer transition plays an important role in aerodynamic drag prediction,the proposal and study of transition prediction methods simulating the complex flow phenomena are prerequisite for aerodynamic design. In this paper, with the application of the linear stability theory based on amplification factor transport transition equations on the two-equation shear stress transport(SST) eddy-viscosity model, a new method, the SST-N TS-N CF model, is yielded. The new amplification factor transport equation for the crossflow instability induced transition is proposed to add to the N TS equation proposed by Coder, which simulates Tollmien–Schlichting wave transition. The turbulent kinetic energy equation is modified by introducing a new source term that simulates the transition process without the intermittency factor equation. Finally, coupled with these two amplification factor transport equations and SST turbulence model, a four-equation transition turbulence model is built. Comparisons between predictions using the new model and wind-tunnel experiments of NACA64(2)A015, NLF(2)-0415 and ONERA-D infinite swept wing and ONERAM6 swept wing validate the predictive quality of the new SST-N_(TS)-N_(CF) model.  相似文献   

16.
《中国航空学报》2022,35(10):148-164
Flows experiencing laminarization and retransition are universal and crucial in many engineering applications. The objective of this study is to conduct an uncertainty quantification and sensitivity analysis of turbulence model closure coefficients in capturing laminarization and retransition for a rapidly contracting channel flow. Specifically, two commonly used turbulence models are considered: the Spalart-Allmaras (SA) one-equation model and the Menter Shear Stress Transport (SST) two-equation model. Thereby, a series of steady Reynolds Averaged Navier-Stokes (RANS) predictions of aero-engine intake acceleration scenarios are carried out with the purposely designed turbulence model closure coefficients. As a result, both SA and SST models fail to capture the retransition phenomenon though they achieve pretty good performance in laminarization. Using the non-intrusive polynomial chaos method, solution uncertainties in velocity, pressure, and surface friction are quantified and analyzed, which reveals that the SST model possesses much great uncertainty in the non-laminar regime, especially for the logarithmic law prediction. Besides, a sensitivity analysis is performed to identify the critical contributors to the solution uncertainty, and then the correlations between the closure coefficients and the deviations of the outputs of interest are obtained via the linear regression method. The results indicate that the diffusion-related constants are the dominant uncertainty contributors for both SA and SST models. Furthermore, the remarkably strong correlation between the critical closure coefficients and the outputs might be a good guide to recalibrate and even optimize the commonly used turbulence models.  相似文献   

17.
利用作者共同研发的In-house代码TRANS3D平台,在SA和SST两种常用湍流模型框架下构建了γ-■转捩模型,并以二维低速S809层流翼型和三维小后掠跨音速F5层流机翼为对象,比较了两种不同湍流模型构架下γ-■转捩模型预测的气动力特性和流场分布。结果表明:两种转捩模型均能预测航空转捩计算中常见的分离流转捩和自然转捩类型,明显改善了中低雷诺数流场下的预测精度,但由于选取基准湍流模型的不同,基于SA和SST的γ-■转捩模型在流动细节上依然存在着一些差异。  相似文献   

18.
提高湍流数值模拟的准确性,从而明确湍流模型对数值模拟结果的影响具有重要的意义,应用K.S.Abdol-Hamid给出的尺度自适应k-kL两方程模型封闭RANS方程,并修改von Karman长度尺度的限制方法,通过平板、翼型、后台阶等流动的模拟,考察k-kL模型在湍流模拟中的准确性,及其反映主要流动特征的能力和网格收敛性,并对影响流动模拟准确性的因素进行讨论.结果表明:改进长度尺度限制之后的k-kL两方程模型无论是对附着流动还是分离流动都可以给出比较准确的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号