首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
SiC工件ELID磨削性能   总被引:1,自引:0,他引:1       下载免费PDF全文
通过ELID(在线修整砂轮)磨削方法对SiC进行磨削试验,从材料去除机理、砂轮粒度的选择、切削深度等方面探讨了SiC ELID磨削参数的选择.实验表明:砂轮粒度、切削深度对加工质量影响较大,在磨削效率和加工工件的表面质量等因素的综合分析基础上,找到优化的工艺参数,使效率和精度达到最高.在本试验条件下,用粒度为W3.5的金刚石砂轮磨削20 min,表面粗糙度可达到0.023μm.  相似文献   

2.
镍基高温合金是航空发动机部件的常用材料,其磨削加工存在工具损耗严重、寿命短等难题。针对3种新研制的刚玉砂轮(分别为粒度60#的微晶和单晶混合磨料砂轮、粒度60#的单晶刚玉砂轮,以及粒度70#的单晶刚玉砂轮),开展了GH4169镍基高温合金材料的磨削试验,从磨削力、磨削温度、砂轮磨损以及表面粗糙度等方面对3种砂轮的磨削性能进行了评价。结果表明,3种砂轮磨削GH4169材料在砂轮磨损和表面粗糙度方面未表现出明显差异,而通过对磨削力和磨削温度的综合评价发现粒度60#的单晶刚玉砂轮的磨削性能更优。3种砂轮磨削GH4169材料的磨削比在0.5~3之间。在正常磨削条件下,3种砂轮的磨削表面粗糙度Ra小于0.4μm。同时发现,砂轮磨损(主要包括磨粒的破碎和脱落)是造成磨削表面缺陷形成的重要原因。  相似文献   

3.
为了研究砂轮表面结构化对砂轮磨削性能的影响,利用脉冲激光对树脂结合剂金刚石砂轮进行了表面宏观结构化。采用6种不同类型的金刚石砂轮表面宏观结构进行了氧化铝的磨削实验,建立了激光宏观结构化金刚石砂轮的磨削力模型,比较了6种不同激光宏观结构化金刚石砂轮与非结构化砂轮在不同磨削参数下磨削力的差异,分析了砂轮制造后的表面形貌与结构化砂轮的磨损特性。实验结果表明,砂轮宏观结构化对磨削性能有很大影响,激光宏观结构化砂轮的磨削力可以减小2. 5%~24. 5%,砂轮结构化后的表面形貌出现石墨化现象;宏观结构化砂轮沟槽边缘磨损加剧,但沟槽磨损并没有明显加快宏观结构化砂轮的磨损。  相似文献   

4.
通过TG砂轮缓进深切磨削超高强度钢CSS-42L试验,研究了砂轮线速度、工件进给速度、磨削深度等磨削参数对磨削力、力比和磨削比能的影响规律。试验表明:切深、工件进给速度对TG砂轮缓进深切磨削CSS-42L磨削力影响十分显著,砂轮线速度的影响相对较小;增大砂轮线速度,磨削力比减小,增大工件进给速度和切深,磨削力比增大。磨削比能es随着当量磨削厚度aeq的增大而减小,当aeq0.06μm时,磨削比能的下降趋势明显;当aeq0.06μm时,随当量磨削厚度增大,磨削比能下降趋势越来越平缓。试验条件范围内,TG砂轮缓进深切磨削CSS-42L钢时最小比能为70J/mm3。  相似文献   

5.
我们针对助力器阀类零件外环槽加工的关键进行了工艺分析,提出了环槽强力成型磨削新工艺的设想。经过两年多的努力,初步实现了这项新工艺(见图1)。要实现所选定的典型零件(见图2)环槽成型磨削工艺,就必须综合考虑砂轮的成型修整、宽砂轮磨削、高速磨削、强力磨削以及与这些工艺特点相匹配的砂轮和冷却液的合理选用。现就我们对成型砂轮的修整,作一简要汇报。一、几种成型修整方法的考虑 1.单粒金刚石修整在通常的情况下,砂轮的成型修整是靠单  相似文献   

6.
 磨削钛合金时砂轮磨损严重,磨削比很低。为了改善钛合金的磨削加工性,本文着重分析了造成砂轮磨损的主要原因,论述了粘附磨损、扩散磨损以及磨粒破碎、脱落所造成的磨损,并分析了磨削条件对砂轮磨损的影响。  相似文献   

7.
镍基高温合金GH4169磨削参数对表面完整性影响   总被引:4,自引:2,他引:2  
研究了用单晶刚玉砂轮磨削镍基高温合金GH4169时,磨削参数对表面完整性中的表面特征(表面粗糙度、表面形貌、表面显微硬度和表面残余应力)的影响,以期优化磨削参数.砂轮速度依次选择15,20,25m/s,磨削深度分别选择50,100,150μm,工件速度分别选择5,10,15m/min.研究结果表明:表面粗糙度对工件速度的变化最敏感,表面显微硬度对砂轮速度变化最敏感,表面残余应力对砂轮速度变化最敏感;同时表明了磨削参数对磨削表面形貌、显微硬度梯度、微观组织、残余应力梯度的影响,揭示了表面完整性中的变质层形成规律.其塑性变形层在5~10μm,显微硬度变化影响层为80~100μm,残余应力影响层厚度为80~200μm,其为磨削镍基高温合金表面完整性控制研究提供相关的实验数据基础.   相似文献   

8.
缓进给磨削工艺适合于成型磨削,尤其在复杂型面构件的高效精密磨削中具有广阔应用前景。本文采用钎焊CBN砂轮进行了镍基铸造高温合金K424的缓磨试验,重点研究了工艺参数(砂轮线速度、工件进给速度、切深)对磨削加工性与表面完整性的影响,包括磨削力与磨削温度、磨削比能、尺寸稳定性、加工表面形貌、亚表面层的显微硬度与金相组织变化、残余应力。结果显示,尽管K424合金的磨削比能高达200-300J/mm3,但在钎焊CBN砂轮缓进给磨削K424合金过程中,磨削温度仅约为100℃。采用砂轮线速度22.5m/s、工件进给速度0.1m/min,以及切深0.2mm的工艺参数加工出满足尺寸精度要求的直槽。磨削表面未发现磨削烧伤与显微裂纹,并且呈压应力状态。  相似文献   

9.
就CBN砂轮表面状态、磨削多数及磨削液对磨削表面粗糙度的影响进行了研究,并提出了改善CBN砂轮磨削表面粗糙度的有关措施。  相似文献   

10.
Mikrosa(米克罗莎)公司向中国推出展品KRONOS S无心外圆磨床。其主要特点为高柔性化应用,包括新工艺的应用(例如CBN磨削)、设置时间的缩短、利用率的提高、操作的简化、高精密磨削加工以及保证最高的安全标准。可用于贯通式磨削、直切入式磨削及斜角切入式磨削,可采用常规砂轮或CBN砂轮,磨削直径范围0.5-30mm,切入式磨削宽度最大120 mm。在不足2h内,通过更换砂轮头架可将磨床由直切入转换成15°斜角切入式无心磨床。这就显著地拓宽了应用范围。  相似文献   

11.
针对垂直磨削中磨削痕迹分布规律不明晰而使得磨削表面质量难以准确控制的问题,开展垂直磨削中磨削参数对磨削痕迹分布规律影响的研究。依据单颗磨粒磨削痕迹分布方程、仿真分析和探讨了砂轮转速、工件转速、进给速度、转速比和相移对磨削痕迹分布的影响,基于磨削参数对磨削痕迹分布和残留高度的影响,优选出了磨削痕迹分布相对合理的磨削参数组合,并进行磨削加工对比实验。结果表明,垂直磨削法中,磨削参数通过改变磨削痕迹的长度、间距、数量、位置关系和分布情况等影响磨削后工件的表面质量。其中,相移的大小会影响磨削痕迹的首尾相接与相互错开情况,直接决定着磨削纹理的形成与否,进而成为影响磨削后工件表面质量的关键因素;此外,尽管磨削参数中工件转速相差很小,但磨削痕迹分布状况会出现显著的差异,进而导致工件表面纹理和破碎情况显著不同及表面粗糙度Ra存在59~125 nm的差距。因此,基于磨削参数对磨削痕迹分布的影响,合理的匹配磨削加工参数可大幅提高工件表面质量。  相似文献   

12.
磨削烧伤研究   总被引:1,自引:0,他引:1  
首先简要分析了磨削烧伤产生的原因,并详细说明了磨削烧伤的等级分类以及各种零件要素在不同条件下的烧伤等级推荐,然后简要分析了本单位有关材料磨削烧伤的现状,最后提出了磨削烧伤的一般解决思路,并举例进行了说明.  相似文献   

13.
14.
通过大量的正交试验,研究陶瓷材料在低速下的磨削性能,优化陶瓷磨削参数,对于丰富陶瓷磨削理论,指导实际生产实践具有重要的现实意义.  相似文献   

15.
本文采用人工热电偶测温方式,对纳米Al2O3陶瓷和普通45#钢进行了普通和超声振动下平面磨削磨削温度的测量.比较了相同磨削参数下超声和普通磨削温度的实验数据.实验结果显示:超声辅助磨削纳米氧化铝陶瓷时陶瓷表面磨削温度比普通磨削时低.但超声辅助磨削45#钢时其磨削温度与普通磨削情况下差别不大.  相似文献   

16.
精密磨齿砂轮误差分析   总被引:1,自引:0,他引:1  
在磨削齿轮过程中,由于砂轮精度难以测定,对其误差分析应从齿轮检测图分析入手,推导出砂轮的具体状态,从而为精密磨削齿轮提供修整方向,并最终为生产高精密齿轮提供理论依据.  相似文献   

17.
18.
超精密磨削中的超硬砂轮修整技术   总被引:15,自引:0,他引:15  
论述了超精密磨削中广泛应用的几种超硬砂轮修整技术,分析了它们的工作原理,特点和适用范围.  相似文献   

19.
采用人工热电偶法,通过普通磨削和二维超声振动磨削对比实验,对纳米ZrO2陶瓷材料平面磨削温度进行了实验研究,并对磨削参数与磨削温度的关系,进行了理论分析及实验验证。  相似文献   

20.
为了提高机器人砂带磨削系统加工复杂型面工件的磨削质量,提出了灵活磨削点和灵活磨削空间的概念,并且对其进行了定义。分析了影响灵活磨削空间的各种因素,提出了确定灵活磨削空间的方法。基于粒子群法,提出了一种通过优化磨削机器人的结构尺寸以及机器人相对于磨削轮的位置关系以获得足够灵活磨削空间的策略。最后,以磨削航空发动机叶片为例,利用本文提出的优化策略对一台专用的PPPRRR型磨削机器人的结构尺寸以及此机器人相对于磨削轮的位置关系进行了优化。仿真结果表明,如果叶片被置于此灵活磨削空间内,那么仅需使用一套夹具和一台磨削机即可实现复杂型面的磨削。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号